/* NAME encoder.go AUTHOR Saxon Nelson-Milton Dan Kortschak LICENSE encoder.go is Copyright (C) 2017-2018 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with revid in gpl.txt. If not, see http://www.gnu.org/licenses. */ package mts import ( "fmt" "io" "strconv" "time" "bitbucket.org/ausocean/av/codec/h264" "bitbucket.org/ausocean/av/codec/h264/h264dec" "bitbucket.org/ausocean/av/container/mts/meta" "bitbucket.org/ausocean/av/container/mts/pes" "bitbucket.org/ausocean/av/container/mts/psi" "bitbucket.org/ausocean/utils/realtime" "bitbucket.org/ausocean/utils/logger" ) // These three constants are used to select between the three different // methods of when the PSI is sent. const ( psiMethodPacket = iota // PSI is inserted after a certain number of packets. psiMethodTime // PSI is inserted after a certain amount of time. psiMethodNAL // PSI is inserted before each "key frame" of media. ) // Constants used to communicate which media codec will be packetized. const ( EncodeH264 = iota EncodeH265 EncodeJPEG EncodeMJPEG EncodePCM EncodeADPCM ) // The program IDs we assign to different types of media. const ( PIDVideo = 256 PIDAudio = 210 ) // Time-related constants. const ( // ptsOffset is the offset added to the clock to determine // the current presentation timestamp. ptsOffset = 700 * time.Millisecond // PCRFrequency is the base Program Clock Reference frequency in Hz. PCRFrequency = 90000 // PTSFrequency is the presentation timestamp frequency in Hz. PTSFrequency = 90000 // MaxPTS is the largest PTS value (i.e., for a 33-bit unsigned integer). MaxPTS = (1 << 33) - 1 ) // If we are not using NAL based PSI intervals then we will send PSI every 7 packets. const psiSendCount = 7 const ( hasPayload = 0x1 hasAdaptationField = 0x2 ) const ( hasDTS = 0x1 hasPTS = 0x2 ) // Default encoder configuration parameters. const ( defaultRate = 25 // FPS defaultPSIMethod = psiMethodNAL defaultStreamID = pes.H264SID defaultMediaPID = PIDVideo ) // Meta allows addition of metadata to encoded mts from outside of this pkg. // See meta pkg for usage. // // TODO: make this not global. var Meta *meta.Data // This will help us obtain a realtime for timestamp meta encoding. var RealTime = realtime.NewRealTime() // Encoder encapsulates properties of an MPEG-TS generator. type Encoder struct { dst io.WriteCloser clock time.Duration lastTime time.Time writePeriod time.Duration ptsOffset time.Duration tsSpace [PacketSize]byte pesSpace [pes.MaxPesSize]byte continuity map[uint16]byte psiMethod int pktCount int psiSendCount int psiTime time.Duration psiSetTime time.Duration startTime time.Time mediaPID uint16 streamID byte pmt *psi.PSI patBytes, pmtBytes []byte // log is a function that will be used through the encoder code for logging. log logger.LoggerIF } // NewEncoder returns an Encoder with the specified media type and rate eg. if a video stream // calls write for every frame, the rate will be the frame rate of the video. func NewEncoder(dst io.WriteCloser, log logger.LoggerIF, options ...func(*Encoder) error) (*Encoder, error) { e := &Encoder{ dst: dst, writePeriod: time.Duration(float64(time.Second) / defaultRate), ptsOffset: ptsOffset, psiMethod: defaultPSIMethod, pktCount: 8, mediaPID: defaultMediaPID, streamID: defaultStreamID, continuity: map[uint16]byte{PatPid: 0, PmtPid: 0, defaultMediaPID: 0}, log: log, patBytes: psi.NewPATPSI().Bytes(), pmt: psi.NewPMTPSI(), } for _, option := range options { err := option(e) if err != nil { return nil, fmt.Errorf("option failed with error: %w", err) } } log.Debug("encoder options applied") e.pmt.SyntaxSection.SpecificData.(*psi.PMT).StreamSpecificData.StreamType = e.streamID e.pmt.SyntaxSection.SpecificData.(*psi.PMT).StreamSpecificData.PID = e.mediaPID e.pmtBytes = e.pmt.Bytes() return e, nil } // Write implements io.Writer. Write takes raw video or audio data and encodes into MPEG-TS, // then sending it to the encoder's io.Writer destination. func (e *Encoder) Write(data []byte) (int, error) { e.log.Debug("writing data", "len(data)", len(data)) switch e.psiMethod { case psiMethodPacket: e.log.Debug("checking packet no. conditions for PSI write", "count", e.pktCount, "PSI count", e.psiSendCount) if e.pktCount >= e.psiSendCount { e.pktCount = 0 err := e.writePSI() if err != nil { return 0, err } } case psiMethodNAL: nalType, err := h264.NALType(data) if err != nil { return 0, fmt.Errorf("could not get type from NAL unit, failed with error: %w", err) } e.log.Debug("checking conditions for PSI write", "AU type", nalType, "needed type", h264dec.NALTypeSPS) if nalType == h264dec.NALTypeSPS { err := e.writePSI() if err != nil { return 0, err } } case psiMethodTime: dur := time.Now().Sub(e.startTime) e.log.Debug("checking time conditions for PSI write") if dur >= e.psiTime { e.psiTime = e.psiSetTime e.startTime = time.Now() err := e.writePSI() if err != nil { return 0, err } } default: panic("undefined PSI method") } // Prepare PES data. pts := e.pts() pesPkt := pes.Packet{ StreamID: e.streamID, PDI: hasPTS, PTS: pts, Data: data, HeaderLength: 5, } buf := pesPkt.Bytes(e.pesSpace[:pes.MaxPesSize]) pusi := true for len(buf) != 0 { pkt := Packet{ PUSI: pusi, PID: uint16(e.mediaPID), RAI: pusi, CC: e.ccFor(e.mediaPID), AFC: hasAdaptationField | hasPayload, PCRF: pusi, } n := pkt.FillPayload(buf) buf = buf[n:] if pusi { // If the packet has a Payload Unit Start Indicator // flag set then we need to write a PCR. pcr := e.pcr() e.log.Debug("new access unit", "PCR", pcr, "PTS", pts) pkt.PCR = pcr pusi = false } _, err := e.dst.Write(pkt.Bytes(e.tsSpace[:PacketSize])) if err != nil { return len(data), err } e.pktCount++ } e.tick() return len(data), nil } // writePSI creates MPEG-TS with pat and pmt tables - with pmt table having updated // location and time data. func (e *Encoder) writePSI() error { // Write PAT. patPkt := Packet{ PUSI: true, PID: PatPid, CC: e.ccFor(PatPid), AFC: hasPayload, Payload: psi.AddPadding(e.patBytes), } _, err := e.dst.Write(patPkt.Bytes(e.tsSpace[:PacketSize])) if err != nil { return err } e.pktCount++ e.pmtBytes, err = updateMeta(e.pmtBytes, e.log) if err != nil { return err } // Create mts packet from pmt table. pmtPkt := Packet{ PUSI: true, PID: PmtPid, CC: e.ccFor(PmtPid), AFC: hasPayload, Payload: psi.AddPadding(e.pmtBytes), } _, err = e.dst.Write(pmtPkt.Bytes(e.tsSpace[:PacketSize])) if err != nil { return err } e.pktCount++ e.log.Debug("PSI written", "PAT CC", patPkt.CC, "PMT CC", pmtPkt.CC) return nil } // tick advances the clock one frame interval. func (e *Encoder) tick() { e.clock += e.writePeriod } // pts retuns the current presentation timestamp. func (e *Encoder) pts() uint64 { return uint64((e.clock + e.ptsOffset).Seconds() * PTSFrequency) } // pcr returns the current program clock reference. func (e *Encoder) pcr() uint64 { return uint64(e.clock.Seconds() * PCRFrequency) } // ccFor returns the next continuity counter for pid. func (e *Encoder) ccFor(pid uint16) byte { cc := e.continuity[pid] const continuityCounterMask = 0xf e.continuity[pid] = (cc + 1) & continuityCounterMask return cc } // updateMeta adds/updates a metaData descriptor in the given psi bytes using data // contained in the global Meta struct. func updateMeta(b []byte, log logger.LoggerIF) ([]byte, error) { p := psi.PSIBytes(b) if RealTime.IsSet() { t := strconv.Itoa(int(RealTime.Get().Unix())) Meta.Add("ts", t) log.Debug("latest time added to meta", "time", t) } err := p.AddDescriptor(psi.MetadataTag, Meta.Encode()) return []byte(p), err } func (e *Encoder) Close() error { e.log.Debug("closing encoder") return e.dst.Close() }