/* NAME adpcm.go DESCRIPTION adpcm.go contains functions for encoding/compressing pcm into adpcm and decoding/decompressing back to pcm. AUTHOR Trek Hopton LICENSE adpcm.go is Copyright (C) 2018 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ /* Original IMA/DVI ADPCM specification: (http://www.cs.columbia.edu/~hgs/audio/dvi/IMA_ADPCM.pdf). Reference algorithms for ADPCM compression and decompression are in part 6. */ package adpcm import ( "bytes" "encoding/binary" "fmt" "math" ) // encoder is used to encode to ADPCM from PCM data. // est and index hold state that persists between calls to encodeSample and calcHead. // dest is the output buffer that implements io.writer and io.bytewriter, ie. where the encoded ADPCM data is written to. type encoder struct { dest *bytes.Buffer est int16 index int16 } // decoder is used to decode from ADPCM to PCM data. // est, index, and step hold state that persists between calls to decodeSample. // dest is the output buffer that implements io.writer and io.bytewriter, ie. where the decoded PCM data is written to. type decoder struct { dest *bytes.Buffer est int16 index int16 step int16 } // PcmBS is the size of the blocks that an encoder uses. // 'encodeBlock' will encode PcmBS bytes at a time and the output will be AdpcmBS bytes long. const PcmBS = 1010 // AdpcmBS is the size of the blocks that a decoder uses. // 'decodeBlock' will decode AdpcmBS bytes at a time and the output will be PcmBS bytes long. const AdpcmBS = 256 // Table of index changes (see spec). var indexTable = []int16{ -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8, } // Quantize step size table (see spec). var stepTable = []int16{ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767, } // NewEncoder retuns a new ADPCM encoder. func NewEncoder(dst *bytes.Buffer) *encoder { e := encoder{ dest: dst, } return &e } // NewDecoder retuns a new ADPCM decoder. func NewDecoder(dst *bytes.Buffer) *decoder { d := decoder{ dest: dst, } return &d } // encodeSample takes a single 16 bit PCM sample and // returns a byte of which the last 4 bits are an encoded ADPCM nibble. func (e *encoder) encodeSample(sample int16) byte { // Find difference between the sample and the previous estimation. delta := capAdd16(sample, -e.est) // Create and set sign bit for nibble and find absolute value of difference. var nib byte if delta < 0 { nib = 8 delta = -delta } step := stepTable[e.index] diff := step >> 3 var mask byte = 4 for i := 0; i < 3; i++ { if delta > step { nib |= mask delta = capAdd16(delta, -step) diff = capAdd16(diff, step) } mask >>= 1 step >>= 1 } if nib&8 != 0 { diff = -diff } // Adjust estimated sample based on calculated difference. e.est = capAdd16(e.est, diff) e.index += indexTable[nib&7] // Check for underflow and overflow. if e.index < 0 { e.index = 0 } else if e.index > int16(len(stepTable)-1) { e.index = int16(len(stepTable) - 1) } return nib } // decodeSample takes a byte, the last 4 bits of which contain a single // 4 bit ADPCM nibble, and returns a 16 bit decoded PCM sample. func (d *decoder) decodeSample(nibble byte) int16 { // Calculate difference. var diff int16 if nibble&4 != 0 { diff = capAdd16(diff, d.step) } if nibble&2 != 0 { diff = capAdd16(diff, d.step>>1) } if nibble&1 != 0 { diff = capAdd16(diff, d.step>>2) } diff = capAdd16(diff, d.step>>3) // Account for sign bit. if nibble&8 != 0 { diff = -diff } // Adjust estimated sample based on calculated difference. d.est = capAdd16(d.est, diff) // Adjust index into step size lookup table using nibble. d.index += indexTable[nibble] // Check for overflow and underflow. if d.index < 0 { d.index = 0 } else if d.index > int16(len(stepTable)-1) { d.index = int16(len(stepTable) - 1) } // Find new quantizer step size. d.step = stepTable[d.index] return d.est } // capAdd16 adds two int16s together and caps at max/min int16 instead of overflowing func capAdd16(a, b int16) int16 { c := int32(a) + int32(b) switch { case c < math.MinInt16: return math.MinInt16 case c > math.MaxInt16: return math.MaxInt16 default: return int16(c) } } // calcHead sets the state for the encoder by running the first sample through // the encoder, and writing the first sample to the encoder's io.Writer (dest). // It returns the number of bytes written to the encoder's io.Writer (dest) along with any errors. func (e *encoder) calcHead(sample []byte, pad bool) (int, error) { // Check that we are given 1 16-bit sample (2 bytes). const sampSize = 2 if len(sample) != sampSize { return 0, fmt.Errorf("length of given byte array is: %v, expected: %v", len(sample), sampSize) } n, err := e.dest.Write(sample) if err != nil { return n, err } err = e.dest.WriteByte(byte(int16(e.index))) if err != nil { return n, err } n++ if pad { err = e.dest.WriteByte(0x01) } else { err = e.dest.WriteByte(0x00) } if err != nil { return n, err } n++ return n, nil } // init initializes the encoder's estimation to the first uncompressed sample and the index to // point to a suitable quantizer step size. func (e *encoder) init(samps []byte) { int1 := int16(binary.LittleEndian.Uint16(samps[0:2])) int2 := int16(binary.LittleEndian.Uint16(samps[2:4])) e.est = int1 halfDiff := math.Abs(math.Abs(float64(int1)) - math.Abs(float64(int2))/2.0) closest := math.Abs(float64(stepTable[0]) - halfDiff) var cInd int16 for i, step := range stepTable { if math.Abs(float64(step)-halfDiff) < closest { closest = math.Abs(float64(step) - halfDiff) cInd = int16(i) } } e.index = cInd } // Write takes a slice of bytes of arbitrary length representing pcm and encodes in into adpcm. // It writes its output to the encoder's dest. // The number of bytes written out is returned along with any error that occured. func (e *encoder) Write(inPcm []byte) (int, error) { // Check that pcm has enough data to initialize decoder pcmLen := len(inPcm) if pcmLen < 4 { return 0, fmt.Errorf("length of given byte array must be greater than 4") } // Determine if there will be a byte that won't contain two full nibbles and will need padding. pad := false if (pcmLen-2)%4 != 0 { pad = true } e.init(inPcm[0:4]) n, err := e.calcHead(inPcm[0:2], pad) if err != nil { return n, err } // Skip the first sample and start at the end of the first two samples, then every two samples encode them into a byte of adpcm. // TODO: make all hard coded numbers variables so that other bitrates and compression ratios can be used. for i := 5; i < pcmLen; i += 4 { nib1 := e.encodeSample(int16(binary.LittleEndian.Uint16(inPcm[i-3 : i-1]))) nib2 := e.encodeSample(int16(binary.LittleEndian.Uint16(inPcm[i-1 : i+1]))) err = e.dest.WriteByte(byte((nib2 << 4) | nib1)) if err != nil { return n, err } n++ } // If we've reached the end of the pcm data and there's a sample (2 bytes) left over, // compress it to a nibble and leave the first half of the byte padded with 0s. if pad { nib := e.encodeSample(int16(binary.LittleEndian.Uint16(inPcm[pcmLen-2 : pcmLen]))) err = e.dest.WriteByte(nib) if err != nil { return n, err } n++ } return n, nil } // Write takes a slice of bytes of arbitrary length representing adpcm and decodes in into pcm. // It writes its output to the decoder's dest. // The number of bytes written out is returned along with any error that occured. func (d *decoder) Write(inAdpcm []byte) (int, error) { // Initialize decoder with first 4 bytes of the inAdpcm. d.est = int16(binary.LittleEndian.Uint16(inAdpcm[0:2])) d.index = int16(inAdpcm[2]) d.step = stepTable[d.index] n, err := d.dest.Write(inAdpcm[0:2]) if err != nil { return n, err } // For each byte, seperate it into two nibbles (each nibble is a compressed sample), // then decode each nibble and output the resulting 16-bit samples. // If padding flag is true (Adpcm[3]), only decode up until the last byte, then decode that separately. for i := 4; i < len(inAdpcm)-int(inAdpcm[3]); i++ { twoNibs := inAdpcm[i] nib2 := byte(twoNibs >> 4) nib1 := byte((nib2 << 4) ^ twoNibs) firstBytes := make([]byte, 2) binary.LittleEndian.PutUint16(firstBytes, uint16(d.decodeSample(nib1))) _n, err := d.dest.Write(firstBytes) n += _n if err != nil { return n, err } secondBytes := make([]byte, 2) binary.LittleEndian.PutUint16(secondBytes, uint16(d.decodeSample(nib2))) _n, err = d.dest.Write(secondBytes) n += _n if err != nil { return n, err } } if inAdpcm[3] == 0x01 { padNib := inAdpcm[len(inAdpcm)-1] samp := make([]byte, 2) binary.LittleEndian.PutUint16(samp, uint16(d.decodeSample(padNib))) _n, err := d.dest.Write(samp) n += _n if err != nil { return n, err } } return n, nil } // BytesOutput will return the number of adpcm bytes that will be generated for the given pcm data byte size. func BytesOutput(pcm int) int { // for X pcm bytes, byteDepth (eg. 2 bytes) are left uncompressed, the rest is compressed by a factor of 4 // and a start index and padding-flag byte are added. // Also if there are an even number of samples, there will be half a byte of padding added to the last byte. byteDepth := 2 if pcm%2*byteDepth == 0 { // %2 because samples are encoded 2 at a time. return (pcm-byteDepth)/4 + byteDepth + 1 + 1 + 1 } return (pcm-byteDepth)/4 + byteDepth + 1 + 1 }