/* NAME audio.go AUTHOR Alan Noble Trek Hopton LICENSE This file is Copyright (C) 2019 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ // Package audio provides access to input from audio devices. package audio import ( "bytes" "errors" "fmt" "io" "sync" "time" "github.com/yobert/alsa" "bitbucket.org/ausocean/av/codec/adpcm" "bitbucket.org/ausocean/av/codec/codecutil" "bitbucket.org/ausocean/av/codec/pcm" "bitbucket.org/ausocean/utils/logger" "bitbucket.org/ausocean/utils/ring" ) const ( pkg = "pkg: " rbTimeout = 100 * time.Millisecond rbNextTimeout = 100 * time.Millisecond rbLen = 200 defaultSampleRate = 48000 ) const ( running = iota paused stopped ) // Rates contains the audio sample rates used by audio. var Rates = [8]int{8000, 16000, 32000, 44100, 48000, 88200, 96000, 192000} // Device holds everything we need to know about the audio input stream. type Device struct { l Logger // Operating mode, either running, paused, or stopped. // "running" means the input goroutine is reading from the ALSA device and writing to the ringbuffer. // "paused" means the input routine is sleeping until unpaused or stopped. // "stopped" means the input routine is stopped and the ALSA device is closed. mode uint8 mu sync.Mutex title string // Name of audio title, or empty for the default title. dev *alsa.Device // Audio input device. ab alsa.Buffer // ALSA's buffer. rb *ring.Buffer // Our buffer. chunkSize int // This is the number of bytes that will be stored at a time. *Config } // Config provides parameters used by Device. type Config struct { SampleRate int Channels int BitDepth int RecPeriod float64 Codec uint8 } // Logger enables any implementation of a logger to be used. // TODO: Make this part of the logger package. type Logger interface { SetLevel(int8) Log(level int8, message string, params ...interface{}) } // NewDevice initializes and returns an Device which can be started, read from, and stopped. func NewDevice(cfg *Config, l Logger) (*Device, error) { a := &Device{} a.Config = cfg a.l = l // Open the requested audio device. err := a.open() if err != nil { a.l.Log(logger.Error, pkg+"failed to open audio device", "error", err.Error()) return nil, errors.New("failed to open audio device") } // Setup ring buffer to capture audio in periods of a.RecPeriod seconds and buffer rbDuration seconds in total. a.ab = a.dev.NewBufferDuration(time.Duration(a.RecPeriod * float64(time.Second))) cs := (float64((len(a.ab.Data)/a.dev.BufferFormat().Channels)*a.Channels) / float64(a.dev.BufferFormat().Rate)) * float64(a.SampleRate) if cs < 1 { a.l.Log(logger.Error, pkg+"given Config parameters are too small", "error", err.Error()) return nil, errors.New("given Config parameters are too small") } if a.Codec == codecutil.ADPCM { a.chunkSize = adpcm.EncBytes(int(cs)) } else { a.chunkSize = int(cs) } a.rb = ring.NewBuffer(rbLen, a.chunkSize, rbTimeout) a.mode = paused go a.input() return a, nil } // Start will start recording audio and writing to the ringbuffer. func (a *Device) Start() error { a.mu.Lock() mode := a.mode a.mu.Unlock() switch mode { case paused: a.mu.Lock() a.mode = running a.mu.Unlock() return nil case stopped: // TODO(Trek): Make this reopen device and start recording. return errors.New("device is stopped") case running: return nil default: return errors.New("invalid mode") } } // Stop will stop recording audio and close the device. func (a *Device) Stop() { a.mu.Lock() a.mode = stopped a.mu.Unlock() } // ChunkSize returns the number of bytes written to the ringbuffer per a.RecPeriod. func (a *Device) ChunkSize() int { return a.chunkSize } // open the recording device with the given name and prepare it to record. // If name is empty, the first recording device is used. func (a *Device) open() error { // Close any existing device. if a.dev != nil { a.l.Log(logger.Debug, pkg+"closing device", "title", a.title) a.dev.Close() a.dev = nil } // Open sound card and open recording device. a.l.Log(logger.Debug, pkg+"opening sound card") cards, err := alsa.OpenCards() if err != nil { a.l.Log(logger.Debug, pkg+"failed to open sound card") return err } defer alsa.CloseCards(cards) a.l.Log(logger.Debug, pkg+"finding audio device") for _, card := range cards { devices, err := card.Devices() if err != nil { continue } for _, dev := range devices { if dev.Type != alsa.PCM || !dev.Record { continue } if dev.Title == a.title || a.title == "" { a.dev = dev break } } } if a.dev == nil { a.l.Log(logger.Debug, pkg+"failed to find audio device") return errors.New("no audio device found") } a.l.Log(logger.Debug, pkg+"opening audio device", "title", a.dev.Title) err = a.dev.Open() if err != nil { a.l.Log(logger.Debug, pkg+"failed to open audio device") return err } // 2 channels is what most devices need to record in. If mono is requested, // the recording will be converted in formatBuffer(). _, err = a.dev.NegotiateChannels(2) if err != nil { return err } // Try to negotiate a rate to record in that is divisible by the wanted rate // so that it can be easily downsampled to the wanted rate. // Note: if a card thinks it can record at a rate but can't actually, this can cause a failure. // Eg. the audioinjector sound card is supposed to record at 8000Hz and 16000Hz but it can't due to a firmware issue, // a fix for this is to remove 8000 and 16000 from the Rates slice. foundRate := false for i := 0; i < len(Rates) && !foundRate; i++ { if Rates[i] < a.SampleRate { continue } if Rates[i]%a.SampleRate == 0 { _, err = a.dev.NegotiateRate(Rates[i]) if err == nil { foundRate = true a.l.Log(logger.Debug, pkg+"Sample rate set", "rate", Rates[i]) } } } // If no easily divisible rate is found, then use the default rate. if !foundRate { a.l.Log(logger.Warning, pkg+"Unable to sample at requested rate, default used.", "rateRequested", a.SampleRate) _, err = a.dev.NegotiateRate(defaultSampleRate) if err != nil { return err } a.l.Log(logger.Debug, pkg+"Sample rate set", "rate", defaultSampleRate) } var aFmt alsa.FormatType switch a.BitDepth { case 16: aFmt = alsa.S16_LE case 32: aFmt = alsa.S32_LE default: return fmt.Errorf("unsupported sample bits %v", a.BitDepth) } _, err = a.dev.NegotiateFormat(aFmt) if err != nil { return err } // Either 8192 or 16384 bytes is a reasonable ALSA buffer size. _, err = a.dev.NegotiateBufferSize(8192, 16384) if err != nil { return err } if err = a.dev.Prepare(); err != nil { return err } a.l.Log(logger.Debug, pkg+"Successfully negotiated ALSA params") return nil } // input continously records audio and writes it to the ringbuffer. // Re-opens the device and tries again if ASLA returns an error. func (a *Device) input() { for { // Check mode. a.mu.Lock() mode := a.mode a.mu.Unlock() switch mode { case paused: time.Sleep(time.Duration(a.RecPeriod) * time.Second) continue case stopped: if a.dev != nil { a.l.Log(logger.Debug, pkg+"closing audio device", "title", a.title) a.dev.Close() a.dev = nil } return } // Read from audio device. a.l.Log(logger.Debug, pkg+"recording audio for period", "seconds", a.RecPeriod) err := a.dev.Read(a.ab.Data) if err != nil { a.l.Log(logger.Debug, pkg+"read failed", "error", err.Error()) err = a.open() // re-open if err != nil { a.l.Log(logger.Fatal, pkg+"reopening device failed", "error", err.Error()) return } continue } // Process audio. a.l.Log(logger.Debug, "processing audio") toWrite := a.formatBuffer() // Write audio to ringbuffer. n, err := a.rb.Write(toWrite.Data) switch err { case nil: a.l.Log(logger.Debug, pkg+"wrote audio to ringbuffer", "length", n) case ring.ErrDropped: a.l.Log(logger.Warning, pkg+"old audio data overwritten") default: a.l.Log(logger.Error, pkg+"unexpected ringbuffer error", "error", err.Error()) return } } } // Read reads from the ringbuffer, returning the number of bytes read upon success. func (a *Device) Read(p []byte) (n int, err error) { // Ready ringbuffer for read. _, err = a.rb.Next(rbNextTimeout) switch err { case nil: case ring.ErrTimeout: return 0, nil default: return 0, err } // Read from ring buffer. n, err = a.rb.Read(p) switch err { case nil: case io.EOF: return 0, nil default: return 0, err } return n, nil } // formatBuffer returns audio that has been converted to the desired format. func (a *Device) formatBuffer() alsa.Buffer { var err error // If nothing needs to be changed, return the original. if a.ab.Format.Channels == a.Channels && a.ab.Format.Rate == a.SampleRate { return a.ab } formatted := alsa.Buffer{Format: a.ab.Format, Data: a.ab.Data} if a.ab.Format.Channels != a.Channels { // Convert channels. // TODO(Trek): Make this work for conversions other than stereo to mono. if a.ab.Format.Channels == 2 && a.Channels == 1 { formatted.Data, err = pcm.StereoToMono(a.ab) if err != nil { a.l.Log(logger.Fatal, pkg+"channel conversion failed", "error", err.Error()) } } } if a.ab.Format.Rate != a.SampleRate { // Convert rate. formatted.Data, err = pcm.Resample(formatted, a.SampleRate) if err != nil { a.l.Log(logger.Fatal, pkg+"rate conversion failed", "error", err.Error()) } } switch a.Codec { case codecutil.PCM: case codecutil.ADPCM: b := bytes.NewBuffer(make([]byte, 0, adpcm.EncBytes(len(formatted.Data)))) enc := adpcm.NewEncoder(b) _, err = enc.Write(formatted.Data) if err != nil { a.l.Log(logger.Fatal, pkg+"unable to encode", "error", err.Error()) } formatted.Data = b.Bytes() default: a.l.Log(logger.Error, pkg+"unhandled audio codec") } return formatted }