// +build !circleci /* DESCRIPTION A filter that detects motion and discards frames without motion. The filter uses a K-Nearest Neighbours (KNN) to determine what is background and what is foreground. AUTHORS Ella Pietraroia LICENSE KNN.go is Copyright (C) 2019 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see http://www.gnu.org/licenses. */ package filter import ( "fmt" "image" "io" "gocv.io/x/gocv" ) // KNN is a filter that provides basic motion detection. KNN is short for // K-Nearest Neighbours method. type KNN struct { debugWindows dst io.WriteCloser // Destination to which motion containing frames go. area float64 // The minimum area that a contour can be found in. bs *gocv.BackgroundSubtractorKNN // Uses the KNN algorithm to find the difference between the current and background frame. knl gocv.Mat // Matrix that is used for calculations. hold [][]byte // Will hold all frames up to hf (so only every hf frame is motion detected). hf int // The number of frames to be held. hfCount int // Counter for the hold array. scale float64 // The factor that frames will be downscaled by for motion detection. } // NewKNN returns a pointer to a new KNN filter struct. func NewKNN(dst io.WriteCloser, area, threshold float64, history, kernelSize int, hf int, scaleFactor int) *KNN { bs := gocv.NewBackgroundSubtractorKNNWithParams(history, threshold, false) k := gocv.GetStructuringElement(gocv.MorphRect, image.Pt(kernelSize, kernelSize)) m := &KNN{ dst: dst, area: area, bs: &bs, knl: k, hold: make([][]byte, hf-1), hf: hf, scale: 1 / float64(scaleFactor), } m.newWindows("KNN") return m } // Implements io.Closer. // Close frees resources used by gocv, because it has to be done manually, due to // it using c-go. func (m *KNN) Close() error { m.bs.Close() m.knl.Close() m.closeWindows() return nil } // Implements io.Writer. // Write applies the motion filter to the video stream. Only frames with motion // are written to the destination encoder, frames without are discarded. func (m *KNN) Write(f []byte) (int, error) { if m.hfCount < (m.hf - 1) { m.hold[m.hfCount] = f m.hfCount++ return len(f), nil } m.hfCount = 0 img, err := gocv.IMDecode(f, gocv.IMReadColor) if err != nil { return 0, fmt.Errorf("can't decode image: %w", err) } defer img.Close() imgDelta := gocv.NewMat() defer imgDelta.Close() // Downsize image to speed up calculations. gocv.Resize(img, &img, image.Point{}, m.scale, m.scale, gocv.InterpolationNearestNeighbor) // Seperate foreground and background. m.bs.Apply(img, &imgDelta) // Threshold imgDelta. gocv.Threshold(imgDelta, &imgDelta, 25, 255, gocv.ThresholdBinary) // Remove noise. gocv.Erode(imgDelta, &imgDelta, m.knl) gocv.Dilate(imgDelta, &imgDelta, m.knl) // Fill small holes. gocv.Dilate(imgDelta, &imgDelta, m.knl) gocv.Erode(imgDelta, &imgDelta, m.knl) // Find contours and reject ones with a small area. var contours [][]image.Point allContours := gocv.FindContours(imgDelta, gocv.RetrievalExternal, gocv.ChainApproxSimple) for _, c := range allContours { if gocv.ContourArea(c) > m.area { contours = append(contours, c) } } // Draw debug information. m.showDebug(img, imgDelta, len(contours) > 0, contours) // Don't write to destination if there is no motion. if len(contours) == 0 { return len(f), nil } // Write to destination, past 4 frames then current frame. for i, h := range m.hold { _, err := m.dst.Write(h) m.hold[i] = nil if err != nil { return len(f), fmt.Errorf("could not write previous frames: %w", err) } } return m.dst.Write(f) }