package revid import ( "errors" "fmt" "io" "sync" "time" "github.com/yobert/alsa" "bitbucket.org/ausocean/av/codec/pcm" "bitbucket.org/ausocean/iot/pi/smartlogger" "bitbucket.org/ausocean/utils/logger" "bitbucket.org/ausocean/utils/ring" ) const ( logPath = "/var/log/netsender" rbDuration = 300 // seconds rbTimeout = 100 * time.Millisecond rbNextTimeout = 100 * time.Millisecond ) var log *logger.Logger // AudioInput holds everything we need to know about the audio input stream. // NB: At 44100 Hz frame rate, 2 channels and 16-bit samples, a period of 5 seconds // results in PCM data chunks of 882000 bytes! A longer period exceeds datastore's 1MB blob limit. type AudioInput struct { mu sync.Mutex // mu protects the AudioInput. mode string // operating mode, either "Normal" or "Paused" source string // name of audio source, or empty for the default source dev *alsa.Device // audio input device ab alsa.Buffer // ALSA's buffer rb *ring.Buffer // our buffer chunkSize int vs int // our "var sum" to track var changes *AudioConfig } // AudioConfig provides parameters used by AudioInput. type AudioConfig struct { SampleRate int Channels int BitDepth int RecPeriod int Codec uint8 } // NewAudioInput starts recording audio and returns an AudioInput struct which the audio can be read from. func NewAudioInput(cfg *AudioConfig) *AudioInput { logLevel := int(logger.Debug) validLogLevel := true if logLevel < int(logger.Debug) || logLevel > int(logger.Fatal) { logLevel = int(logger.Info) validLogLevel = false } logSender := smartlogger.New(logPath) log = logger.New(int8(logLevel), &logSender.LogRoller) log.Log(logger.Info, "log-netsender: Logger Initialized") if !validLogLevel { log.Log(logger.Error, "Invalid log level was defaulted to Info") } a := &AudioInput{} a.AudioConfig = cfg // Open the requested audio device. err := a.open() if err != nil { log.Log(logger.Fatal, "alsa.open failed", "error", err.Error()) } // Capture audio in periods of a.RecPeriod seconds, and buffer rbDuration seconds in total. a.ab = a.dev.NewBufferDuration(time.Second * time.Duration(a.RecPeriod)) a.chunkSize = (((len(a.ab.Data) / a.dev.BufferFormat().Channels) * a.Channels) / a.dev.BufferFormat().Rate) * a.SampleRate rbLen := rbDuration / a.RecPeriod a.rb = ring.NewBuffer(rbLen, a.chunkSize, rbTimeout) go a.input() return a } func (a *AudioInput) ChunkSize() int { return a.chunkSize } // open or re-open the recording device with the given name and prepare it to record. // If name is empty, the first recording device is used. func (a *AudioInput) open() error { if a.dev != nil { log.Log(logger.Debug, "Closing", "source", a.source) a.dev.Close() a.dev = nil } log.Log(logger.Debug, "Opening", "source", a.source) cards, err := alsa.OpenCards() if err != nil { return err } defer alsa.CloseCards(cards) for _, card := range cards { devices, err := card.Devices() if err != nil { return err } for _, dev := range devices { if dev.Type != alsa.PCM || !dev.Record { continue } if dev.Title == a.source || a.source == "" { a.dev = dev break } } } if a.dev == nil { return errors.New("No audio source found") } log.Log(logger.Debug, "Found audio source", "source", a.dev.Title) // ToDo: time out if Open takes too long. err = a.dev.Open() if err != nil { return err } log.Log(logger.Debug, "Opened audio source") // 2 channels is what most devices need to record in. If mono is requested, // the recording will be converted in formatBuffer(). _, err = a.dev.NegotiateChannels(2) if err != nil { return err } // Try to negotiate a rate to record in that is divisible by the wanted rate // so that it can be easily downsampled to the wanted rate. // Note: if a card thinks it can record at a rate but can't actually, this can cause a failure. Eg. // the audioinjector is supposed to record at 8000Hz and 16000Hz but it can't due to a firmware issue, // to fix this 8000 and 16000 must be removed from this slice. rates := [8]int{8000, 16000, 32000, 44100, 48000, 88200, 96000, 192000} foundRate := false for i := 0; i < len(rates) && !foundRate; i++ { if rates[i] < a.SampleRate { continue } if rates[i]%a.SampleRate == 0 { _, err = a.dev.NegotiateRate(rates[i]) if err == nil { foundRate = true log.Log(logger.Debug, "Sample rate set", "rate", rates[i]) } } } // If no easily divisible rate is found, then use the default rate. if !foundRate { log.Log(logger.Warning, "Unable to sample at requested rate, default used.", "rateRequested", a.SampleRate) _, err = a.dev.NegotiateRate(defaultSampleRate) if err != nil { return err } log.Log(logger.Debug, "Sample rate set", "rate", defaultSampleRate) } var fmt alsa.FormatType switch a.BitDepth { case 16: fmt = alsa.S16_LE case 32: fmt = alsa.S32_LE default: return errors.New("Unsupported sample bits") } _, err = a.dev.NegotiateFormat(fmt) if err != nil { return err } // Either 8192 or 16384 bytes is a reasonable ALSA buffer size. _, err = a.dev.NegotiateBufferSize(8192, 16384) if err != nil { return err } if err = a.dev.Prepare(); err != nil { return err } log.Log(logger.Debug, "Successfully negotiated ALSA params") return nil } // input continously records audio and writes it to the ringbuffer. // Re-opens the device and tries again if ASLA returns an error. // Spends a lot of time sleeping in Paused mode. // ToDo: Currently, reading audio and writing to the ringbuffer are synchronous. // Need a way to asynchronously read from the ALSA buffer, i.e., _while_ it is recording to avoid any gaps. func (a *AudioInput) input() { for { a.mu.Lock() mode := a.mode a.mu.Unlock() if mode == "Paused" { time.Sleep(time.Duration(a.RecPeriod) * time.Second) continue } log.Log(logger.Debug, "Recording audio for period", "seconds", a.RecPeriod) a.mu.Lock() err := a.dev.Read(a.ab.Data) a.mu.Unlock() if err != nil { log.Log(logger.Debug, "Device.Read failed", "error", err.Error()) a.mu.Lock() err = a.open() // re-open if err != nil { log.Log(logger.Fatal, "alsa.open failed", "error", err.Error()) } a.mu.Unlock() continue } toWrite := a.formatBuffer() log.Log(logger.Debug, "Audio format conversion has been performed where needed") fmt.Printf("Writing %v bytes to ringbuffer\n", len(toWrite.Data)) var n int n, err = a.rb.Write(toWrite.Data) fmt.Printf("Wrote %v bytes to ringbuffer\n", n) switch err { case nil: log.Log(logger.Debug, "Wrote audio to ringbuffer", "length", n) case ring.ErrDropped: log.Log(logger.Warning, "Dropped audio") default: log.Log(logger.Error, "Unexpected ringbuffer error", "error", err.Error()) return } } } // read reads a full PCM chunk from the ringbuffer, returning the number of bytes read upon success. // Any errors returned are unexpected and should be considered fatal. func (a AudioInput) Read(p []byte) (n int, err error) { fmt.Println("Performing AudioInput read...") chunk, err := a.rb.Next(rbNextTimeout) switch err { case nil: // Do nothing. case ring.ErrTimeout: return 0, nil case io.EOF: log.Log(logger.Error, "Unexpected EOF from ring.Next") return 0, io.ErrUnexpectedEOF default: log.Log(logger.Error, "Unexpected error from ring.Next", "error", err.Error()) return 0, err } fmt.Printf("Reading %v bytes from ringbuffer\n", chunk.Len()) n, err = io.ReadFull(a.rb, p[:chunk.Len()]) fmt.Printf("Read %v bytes from ringbuffer\n", n) if err != nil { log.Log(logger.Error, "Unexpected error from ring.Read", "error", err.Error()) return n, err } log.Log(logger.Debug, "Read audio from ringbuffer", "length", n) return n, nil } // formatBuffer returns an ALSA buffer that has the recording data from the ac's original ALSA buffer but stored // in the desired format specified by the ac's parameters. func (a *AudioInput) formatBuffer() alsa.Buffer { var err error a.mu.Lock() wantChannels := a.Channels wantRate := a.SampleRate a.mu.Unlock() // If nothing needs to be changed, return the original. if a.ab.Format.Channels == wantChannels && a.ab.Format.Rate == wantRate { return a.ab } formatted := alsa.Buffer{Format: a.ab.Format} bufCopied := false if a.ab.Format.Channels != wantChannels { // Convert channels. if a.ab.Format.Channels == 2 && wantChannels == 1 { if formatted.Data, err = pcm.StereoToMono(a.ab); err != nil { log.Log(logger.Warning, "Channel conversion failed, audio has remained stereo", "error", err.Error()) } else { formatted.Format.Channels = 1 } bufCopied = true } } if a.ab.Format.Rate != wantRate { // Convert rate. if bufCopied { formatted.Data, err = pcm.Resample(formatted, wantRate) } else { formatted.Data, err = pcm.Resample(a.ab, wantRate) } if err != nil { log.Log(logger.Warning, "Rate conversion failed, audio has remained original rate", "error", err.Error()) } else { formatted.Format.Rate = wantRate } } return formatted }