/* NAME mpegts_test.go DESCRIPTION mpegts_test.go contains testing for functionality found in mpegts.go. AUTHORS Saxon A. Nelson-Milton LICENSE Copyright (C) 2019 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see http://www.gnu.org/licenses. */ package mts import ( "bytes" "math/rand" "reflect" "strconv" "testing" "time" "bitbucket.org/ausocean/av/container/mts/meta" "bitbucket.org/ausocean/av/container/mts/pes" "bitbucket.org/ausocean/av/container/mts/psi" "github.com/Comcast/gots/packet" ) // TestGetPTSRange checks that GetPTSRange can correctly get the first and last // PTS in an MPEGTS clip for a general case. func TestGetPTSRange1(t *testing.T) { const ( numOfFrames = 20 maxFrameSize = 1000 minFrameSize = 100 rate = 25 // fps interval = float64(1) / rate // s ptsFreq = 90000 // Hz ) // Generate randomly sized data for each frame. rand.Seed(time.Now().UnixNano()) frames := make([][]byte, numOfFrames) for i := range frames { size := rand.Intn(maxFrameSize-minFrameSize) + minFrameSize frames[i] = make([]byte, size) } var clip bytes.Buffer // Write the PSI first. err := writePSI(&clip) if err != nil { t.Fatalf("did not expect error writing psi: %v", err) } // Now write frames. var curTime float64 for _, frame := range frames { nextPTS := curTime * ptsFreq err = writeFrame(&clip, frame, uint64(nextPTS)) if err != nil { t.Fatalf("did not expect error writing frame: %v", err) } curTime += interval } got, err := GetPTSRange(clip.Bytes(), videoPid) if err != nil { t.Fatalf("did not expect error getting PTS range: %v", err) } want := [2]uint64{0, uint64((numOfFrames - 1) * interval * ptsFreq)} if got != want { t.Errorf("did not get expected result.\n Got: %v\n Want: %v\n", got, want) } } // writePSI is a helper function write the PSI found at the start of a clip. func writePSI(b *bytes.Buffer) error { // Write PAT. pat := Packet{ PUSI: true, PID: PatPid, CC: 0, AFC: HasPayload, Payload: psi.AddPadding(patTable), } _, err := b.Write(pat.Bytes(nil)) if err != nil { return err } // Write PMT. pmt := Packet{ PUSI: true, PID: PmtPid, CC: 0, AFC: HasPayload, Payload: psi.AddPadding(pmtTable), } _, err = b.Write(pmt.Bytes(nil)) if err != nil { return err } return nil } // writeFrame is a helper function used to form a PES packet from a frame, and // then fragment this across MPEGTS packets where they are then written to the // given buffer. func writeFrame(b *bytes.Buffer, frame []byte, pts uint64) error { // Prepare PES data. pesPkt := pes.Packet{ StreamID: H264ID, PDI: hasPTS, PTS: pts, Data: frame, HeaderLength: 5, } buf := pesPkt.Bytes(nil) // Write PES data acroos MPEGTS packets. pusi := true for len(buf) != 0 { pkt := Packet{ PUSI: pusi, PID: videoPid, RAI: pusi, CC: 0, AFC: hasAdaptationField | hasPayload, PCRF: pusi, } n := pkt.FillPayload(buf) buf = buf[n:] pusi = false _, err := b.Write(pkt.Bytes(nil)) if err != nil { return err } } return nil } // TestGetPTSRange2 checks that GetPTSRange behaves correctly with cases where // the first instance of a PID is not a payload start, and also where there // are no payload starts. func TestGetPTSRange2(t *testing.T) { const ( nPackets = 8 // The number of MTS packets we will generate. wantPID = 1 // The PID we want. ) tests := []struct { pusi []bool // The value of PUSI for each packet. pid []uint16 // The PIDs for each packet. pts []uint64 // The PTS for each packet. want [2]uint64 // The wanted PTS from GetPTSRange. err error // The error we expect from GetPTSRange. }{ { []bool{false, false, false, true, false, false, true, false}, []uint16{0, 0, 1, 1, 1, 1, 1, 1}, []uint64{0, 0, 0, 1, 0, 0, 2, 0}, [2]uint64{1, 2}, nil, }, { []bool{false, false, false, true, false, false, false, false}, []uint16{0, 0, 1, 1, 1, 1, 1, 1}, []uint64{0, 0, 0, 1, 0, 0, 0, 0}, [2]uint64{1, 1}, nil, }, { []bool{false, false, false, false, false, false, false, false}, []uint16{0, 0, 1, 1, 1, 1, 1, 1}, []uint64{0, 0, 0, 0, 0, 0, 0, 0}, [2]uint64{0, 0}, errNoPTS, }, } var clip bytes.Buffer for i, test := range tests { // Generate MTS packets for this test. clip.Reset() for j := 0; j < nPackets; j++ { pesPkt := pes.Packet{ StreamID: H264ID, PDI: hasPTS, PTS: test.pts[j], Data: []byte{}, HeaderLength: 5, } buf := pesPkt.Bytes(nil) pkt := Packet{ PUSI: test.pusi[j], PID: test.pid[j], RAI: true, CC: 0, AFC: hasAdaptationField | hasPayload, PCRF: true, } pkt.FillPayload(buf) _, err := clip.Write(pkt.Bytes(nil)) if err != nil { t.Fatalf("did not expect clip write error: %v", err) } } pts, err := GetPTSRange(clip.Bytes(), wantPID) if err != test.err { t.Errorf("did not get expected error for test: %v\nGot: %v\nWant: %v\n", i, err, test.err) } if pts != test.want { t.Errorf("did not get expected result for test: %v\nGot: %v\nWant: %v\n", i, pts, test.want) } } } // TestBytes checks that Packet.Bytes() correctly produces a []byte // representation of a Packet. func TestBytes(t *testing.T) { const payloadLen, payloadChar, stuffingChar = 120, 0x11, 0xff const stuffingLen = PacketSize - payloadLen - 12 tests := []struct { packet Packet expectedHeader []byte }{ { packet: Packet{ PUSI: true, PID: 1, RAI: true, CC: 4, AFC: HasPayload | HasAdaptationField, PCRF: true, PCR: 1, }, expectedHeader: []byte{ 0x47, // Sync byte. 0x40, // TEI=0, PUSI=1, TP=0, PID=00000. 0x01, // PID(Cont)=00000001. 0x34, // TSC=00, AFC=11(adaptation followed by payload), CC=0100(4). byte(7 + stuffingLen), // AFL=. 0x50, // DI=0,RAI=1,ESPI=0,PCRF=1,OPCRF=0,SPF=0,TPDF=0, AFEF=0. 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, // PCR. }, }, } for testNum, test := range tests { // Construct payload. payload := make([]byte, 0, payloadLen) for i := 0; i < payloadLen; i++ { payload = append(payload, payloadChar) } // Fill the packet payload. test.packet.FillPayload(payload) // Create expected packet data and copy in expected header. expected := make([]byte, len(test.expectedHeader), PacketSize) copy(expected, test.expectedHeader) // Append stuffing. for i := 0; i < stuffingLen; i++ { expected = append(expected, stuffingChar) } // Append payload to expected bytes. expected = append(expected, payload...) // Compare got with expected. got := test.packet.Bytes(nil) if !bytes.Equal(got, expected) { t.Errorf("did not get expected result for test: %v.\n Got: %v\n Want: %v\n", testNum, got, expected) } } } // TestFindPid checks that FindPid can correctly extract the first instance // of a PID from an MPEG-TS stream. func TestFindPid(t *testing.T) { const targetPacketNum, numOfPackets, targetPid, stdPid = 6, 15, 1, 0 // Prepare the stream of packets. var stream []byte for i := 0; i < numOfPackets; i++ { pid := uint16(stdPid) if i == targetPacketNum { pid = targetPid } p := Packet{ PID: pid, AFC: hasPayload | hasAdaptationField, } p.FillPayload([]byte{byte(i)}) stream = append(stream, p.Bytes(nil)...) } // Try to find the targetPid in the stream. p, i, err := FindPid(stream, targetPid) if err != nil { t.Fatalf("unexpected error finding PID: %v\n", err) } // Check the payload. var _p packet.Packet copy(_p[:], p) payload, err := packet.Payload(&_p) if err != nil { t.Fatalf("unexpected error getting packet payload: %v\n", err) } got := payload[0] if got != targetPacketNum { t.Errorf("payload of found packet is not correct.\nGot: %v, Want: %v\n", got, targetPacketNum) } // Check the index. _got := i / PacketSize if _got != targetPacketNum { t.Errorf("index of found packet is not correct.\nGot: %v, want: %v\n", _got, targetPacketNum) } } // TestTrimToMetaRange checks that TrimToMetaRange can correctly return a segment // of MPEG-TS corresponding to a meta interval in a slice of MPEG-TS. func TestTrimToMetaRange(t *testing.T) { Meta = meta.New() const ( nPSI = 10 key = "n" ) var ( clip bytes.Buffer ) for i := 0; i < nPSI; i++ { Meta.Add(key, strconv.Itoa((i*2)+1)) err := writePSIWithMeta(&clip) if err != nil { t.Fatalf("did not expect to get error writing PSI, error: %v", err) } } tests := []struct { from string to string expect []byte err error }{ { from: "3", to: "9", expect: clip.Bytes()[3*PacketSize : 10*PacketSize], err: nil, }, { from: "30", to: "8", expect: nil, err: errMetaLowerBound, }, { from: "3", to: "30", expect: nil, err: errMetaUpperBound, }, } // Run tests. for i, test := range tests { got, err := TrimToMetaRange(clip.Bytes(), key, test.from, test.to) // First check the error. if err != nil && err != test.err { t.Errorf("unexpected error: %v for test: %v", err, i) continue } else if err != test.err { t.Errorf("expected to get error: %v for test: %v", test.err, i) continue } // Now check data. if test.err == nil && !bytes.Equal(test.expect, got) { t.Errorf("did not get expected data for test: %v\n Got: %v\n, Want: %v\n", i, got, test.expect) } } } // TestSegmentForMeta checks that SegmentForMeta can correctly segment some MTS // data based on a given meta key and value. func TestSegmentForMeta(t *testing.T) { Meta = meta.New() const ( nPSI = 10 // The number of PSI pairs to write. key = "n" // The meta key we will work with. val = "*" // This is the meta value we will look for. ) tests := []struct { metaVals [nPSI]string // This represents the meta value for meta pairs (PAT and PMT) expectIdxs []rng // This gives the expect index ranges for the segments. }{ { metaVals: [nPSI]string{"1", "2", val, val, val, "3", val, val, "4", "4"}, expectIdxs: []rng{ scale(2, 5), scale(6, 8), }, }, { metaVals: [nPSI]string{"1", "2", val, val, val, "", "3", val, val, "4"}, expectIdxs: []rng{ scale(2, 5), scale(7, 9), }, }, { metaVals: [nPSI]string{"1", "2", val, val, val, "", "3", val, val, val}, expectIdxs: []rng{ scale(2, 5), {((7 * 2) + 1) * PacketSize, (nPSI * 2) * PacketSize}, }, }, { metaVals: [nPSI]string{"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"}, expectIdxs: nil, }, } var clip bytes.Buffer for testn, test := range tests { // We want a clean buffer for each new test, so reset. clip.Reset() // Add meta and write PSI to clip. for i := 0; i < nPSI; i++ { if test.metaVals[i] != "" { Meta.Add(key, test.metaVals[i]) } else { Meta.Delete(key) } err := writePSIWithMeta(&clip) if err != nil { t.Fatalf("did not expect to get error writing PSI, error: %v", err) } } // Now we get the expected segments using the index ranges from the test. var want [][]byte for _, idxs := range test.expectIdxs { want = append(want, clip.Bytes()[idxs.start:idxs.end]) } // Now use the function we're testing to get the segments. got, err := SegmentForMeta(clip.Bytes(), key, val) if err != nil { t.Fatalf("unexpected error: %v", err) } // Check that segments are OK. if !reflect.DeepEqual(want, got) { t.Errorf("did not get expected result for test %v\nGot: %v\nWant: %v\n", testn, got, want) } } } // rng describes an index range and is used by TestSegmentForMeta. type rng struct { start int end int } // scale takes a PSI index (i.e. first PSI is 0, next is 1) and modifies to be // the index of the first byte of the PSI pair (PAT and PMT) in the byte stream. // This assumes there are only PSI written consequitively, and is used by // TestSegmentForMeta. func scale(x, y int) rng { return rng{ ((x * 2) + 1) * PacketSize, ((y * 2) + 1) * PacketSize, } }