/* NAME adpcm.go DESCRIPTION adpcm.go contains functions for encoding/compressing pcm into adpcm and decoding/decompressing back to pcm. AUTHOR Trek Hopton LICENSE adpcm.go is Copyright (C) 2018 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ /* Original IMA/DVI ADPCM specification: (http://www.cs.columbia.edu/~hgs/audio/dvi/IMA_ADPCM.pdf). Reference algorithms for ADPCM compression and decompression are in part 6. */ package adpcm import ( "bytes" "encoding/binary" "fmt" "math" ) // Encoder is used to encode to ADPCM from PCM data. // pred and index hold state that persists between calls to encodeSample and calcHead. // dest is the output buffer that implements io.writer and io.bytewriter, ie. where the encoded ADPCM data is written to. type Encoder struct { dest *bytes.Buffer pred int16 index int16 } // Decoder is used to decode from ADPCM to PCM data. // pred, index, and step hold state that persists between calls to decodeSample. // dest is the output buffer that implements io.writer and io.bytewriter, ie. where the decoded PCM data is written to. type Decoder struct { dest *bytes.Buffer pred int16 index int16 step int16 } // table of index changes (see spec) var indexTable = []int16{ -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8, } // quantize step size table (see spec) var stepTable = []int16{ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767, } // NewEncoder retuns a new ADPCM encoder. func NewEncoder(dst *bytes.Buffer) *Encoder { e := Encoder{ dest: dst, } return &e } // NewDecoder retuns a new ADPCM decoder. func NewDecoder(dst *bytes.Buffer) *Decoder { d := Decoder{ step: stepTable[0], dest: dst, } return &d } // encodeSample takes a single 16 bit PCM sample and // returns a byte of which the last 4 bits are an encoded ADPCM nibble func (e *Encoder) encodeSample(sample int16) byte { delta := sample - e.pred var nibble byte // set sign bit and find absolute value of difference if delta < 0 { nibble = 8 delta = -delta } step := stepTable[e.index] diff := step >> 3 var mask byte = 4 for i := 0; i < 3; i++ { if delta > step { nibble |= mask delta -= step diff += step } mask >>= 1 step >>= 1 } // adjust predicted sample based on calculated difference if nibble&8 != 0 { e.pred = capAdd16(e.pred, -diff) } else { e.pred = capAdd16(e.pred, diff) } // check for underflow and overflow if e.pred < math.MinInt16 { e.pred = math.MinInt16 } else if e.pred > math.MaxInt16 { e.pred = math.MaxInt16 } e.index += indexTable[nibble&7] // check for underflow and overflow if e.index < 0 { e.index = 0 } else if e.index > int16(len(stepTable)-1) { e.index = int16(len(stepTable) - 1) } return nibble } // decodeSample takes a byte, the last 4 bits of which contain a single // 4 bit ADPCM nibble, and returns a 16 bit decoded PCM sample func (d *Decoder) decodeSample(nibble byte) int16 { // calculate difference var diff int16 if nibble&4 != 0 { diff += d.step } if nibble&2 != 0 { diff += d.step >> 1 } if nibble&1 != 0 { diff += d.step >> 2 } diff += d.step >> 3 // account for sign bit if nibble&8 != 0 { diff = -diff } // adjust predicted sample based on calculated difference d.pred = capAdd16(d.pred, diff) // adjust index into step size lookup table using nibble d.index += indexTable[nibble] // check for overflow and underflow if d.index < 0 { d.index = 0 } else if d.index > int16(len(stepTable)-1) { d.index = int16(len(stepTable) - 1) } // find new quantizer step size d.step = stepTable[d.index] return d.pred } // capAdd16 adds two int16s together and caps at max/min int16 instead of overflowing func capAdd16(a, b int16) int16 { c := int32(a) + int32(b) switch { case c < math.MinInt16: return math.MinInt16 case c > math.MaxInt16: return math.MaxInt16 default: return int16(c) } } func (e *Encoder) calcHead(sample []byte) error { // check that we are given 1 16-bit sample (2 bytes) sampSize := 2 if len(sample) != sampSize { return fmt.Errorf("length of given byte array is: %v, expected: %v", len(sample), sampSize) } intSample := int16(binary.LittleEndian.Uint16(sample)) e.encodeSample(intSample) e.dest.Write(sample) e.dest.WriteByte(byte(uint16(e.index))) e.dest.WriteByte(byte(0x00)) return nil } // EncodeBlock takes a slice of 1010 bytes (505 16-bit PCM samples). // It returns a byte slice containing encoded (compressed) ADPCM nibbles (each byte contains two nibbles). func (e *Encoder) EncodeBlock(block []byte) error { bSize := 1010 if len(block) != bSize { return fmt.Errorf("unsupported block size. Given: %v, expected: %v, ie. 505 16-bit PCM samples", len(block), bSize) } err := e.calcHead(block[0:2]) if err != nil { return err } for i := 2; i < len(block); i++ { if (i+1)%4 == 0 { sample2 := e.encodeSample(int16(binary.LittleEndian.Uint16(block[i-1 : i+1]))) sample := e.encodeSample(int16(binary.LittleEndian.Uint16(block[i+1 : i+3]))) e.dest.WriteByte(byte((sample << 4) | sample2)) } } return nil } // DecodeBlock takes a slice of 256 bytes, each byte should contain two ADPCM encoded nibbles. // It returns a byte slice containing the resulting decoded (uncompressed) 16-bit PCM samples. func (d *Decoder) DecodeBlock(block []byte) error { bSize := 256 if len(block) != bSize { return fmt.Errorf("unsupported block size. Given: %v, expected: %v", len(block), bSize) } d.pred = int16(binary.LittleEndian.Uint16(block[0:2])) d.index = int16(block[2]) d.step = stepTable[d.index] d.dest.Write(block[0:2]) for i := 4; i < len(block); i++ { originalSample := block[i] secondSample := byte(originalSample >> 4) firstSample := byte((secondSample << 4) ^ originalSample) firstBytes := make([]byte, 2) binary.LittleEndian.PutUint16(firstBytes, uint16(d.decodeSample(firstSample))) d.dest.Write(firstBytes) secondBytes := make([]byte, 2) binary.LittleEndian.PutUint16(secondBytes, uint16(d.decodeSample(secondSample))) d.dest.Write(secondBytes) } return nil }