/* NAME rtmp.go DESCRIPTION See Readme.md AUTHOR Saxon Nelson-Milton Dan Kortschak LICENSE rtmp.go is Copyright (C) 2017 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with revid in gpl.txt. If not, see http://www.gnu.org/licenses. */ package rtmp /* #cgo CFLAGS: -I/usr/local/include/librtmp #cgo LDFLAGS: -lrtmp -Wl,-rpath=/usr/local/lib #include #include #include RTMP* start_session(RTMP* rtmp, char* url, uint connect_timeout); int write_frame(RTMP* rtmp, char* data, uint data_length); int end_session(RTMP* rtmp); void AV_queue(RTMP_METHOD **vals, int *num, AVal *av, int txn); int WriteN(RTMP *r, const char *buffer, int n); */ import "C" import ( "errors" _ "fmt" "log" "math" "reflect" "strconv" "unsafe" ) const ( minDataSize = 11 debugMode = false nullChar = "golang\000" ) const ( byteSize = 1 int32Size = 4 int64Size = 8 ) const ( RTMP_PACKET_SIZE_LARGE = 0 RTMP_PACKET_SIZE_MEDIUM = 1 RTMP_PACKET_SIZE_SMALL = 2 RTMP_PACKET_TYPE_INFO = 0x12 RTMP_PACKET_TYPE_AUDIO = 0x08 RTMP_PACKET_TYPE_VIDEO = 0x09 ) // C.AVal is in amf.h // See #define AVC(str) {str, sizeof(str)-1} in amf.h func AVC(str string) C.AVal { var aval C.AVal aval.av_val = C.CString(str) aval.av_len = C.int(len(str)) return aval } // av_setDataFrame is a static const global in rtmp.c var setDataFrame = AVC("@setDataFrame") var packetSize = [...]int32{ 12, 8, 4, 1} // Session provides an interface for sending flv tags over rtmp. type Session interface { Open() error Write([]byte) (int, error) Close() error } // session provides parameters required for an rtmp communication session. type session struct { rtmp *C.RTMP url string timeout uint } var _ Session = (*session)(nil) // NewSession returns a new session. func NewSession(url string, connectTimeout uint) Session { return &session{ url: url, timeout: connectTimeout, } } // Open establishes an rtmp connection with the url passed into the // constructor func (s *session) Open() error { if s.rtmp != nil { return errors.New("rtmp: attempt to start already running session") } var err error s.rtmp, err = C.start_session(s.rtmp, C.CString(s.url), C.uint(s.timeout)) if s.rtmp == nil { return err } return nil } // Close terminates the rtmp connection func (s *session) Close() error { if s.rtmp == nil { return Err(3) } ret := C.end_session(s.rtmp) s.rtmp = nil if ret != 0 { return Err(ret) } return nil } // Write writes a frame (flv tag) to the rtmp connection func (s *session) Write(data []byte) (int, error) { if s.rtmp == nil { return 0, Err(3) } if C.RTMP_IsConnected(s.rtmp) == 0 { return 0, Err(1) } //if C.RTMP_Write(s.rtmp,(*C.char)(unsafe.Pointer(&data[0])),C.int(len(data))) == 0 { if rtmpWrite(s.rtmp, data) == 0 { return 0, Err(2) } return len(data), nil } // rtmpWrite writes data to the current rtmp connection encapsulated by r func rtmpWrite(r *C.RTMP, data []byte) int { buf := sliceToPtr(data) // TODO: port RTMPPacket var pkt = &r.m_write var pend, enc unsafe.Pointer size := len(data) s2 := size var ret, num int pkt.m_nChannel = 0x04 pkt.m_nInfoField2 = r.m_stream_id for s2 != 0 { if pkt.m_nBytesRead == 0 { if size < minDataSize { log.Printf("size: %d\n", size) log.Printf("too small \n") return 0 } if indxBytePtr(buf,0) == 'F' && indxBytePtr(buf,1) == 'L' && indxBytePtr(buf,2) == 'V' { buf = unsafe.Pointer(uintptr(buf) + uintptr(13)) s2 -= 13 } pkt.m_packetType = C.uchar(indxBytePtr(buf,0)) buf = incBytePtr(buf, 1) // TODO: port this pkt.m_nBodySize = C.AMF_DecodeInt24((*C.char)(buf)) buf = incBytePtr(buf, 3) // TODO: replace with ported version pkt.m_nTimeStamp = C.AMF_DecodeInt24((*C.char)(buf)) buf = incBytePtr(buf, 3) pkt.m_nTimeStamp |= C.uint(indxBytePtr(buf,0)) << 24 buf = incBytePtr(buf, 4) s2 -= 11 if ((pkt.m_packetType == RTMP_PACKET_TYPE_AUDIO || pkt.m_packetType == RTMP_PACKET_TYPE_VIDEO) && pkt.m_nTimeStamp == 0) || pkt.m_packetType == RTMP_PACKET_TYPE_INFO { pkt.m_headerType = RTMP_PACKET_SIZE_LARGE if pkt.m_packetType == RTMP_PACKET_TYPE_INFO { pkt.m_nBodySize += 16 } } else { pkt.m_headerType = RTMP_PACKET_SIZE_MEDIUM } // TODO: Port this if int(C.RTMPPacket_Alloc(pkt, pkt.m_nBodySize)) == 0 { log.Println("Failed to allocate packet") return 0 } enc = unsafe.Pointer(pkt.m_body) pend = incBytePtr(enc, int(pkt.m_nBodySize)) if pkt.m_packetType == RTMP_PACKET_TYPE_INFO { // TODO: Port this enc = unsafe.Pointer(C.AMF_EncodeString((*C.char)(enc), (*C.char)(pend), &setDataFrame)) pkt.m_nBytesRead = C.uint(math.Abs(float64(uintptr(enc) - uintptr(unsafe.Pointer(pkt.m_body))))) } } else { enc = incBytePtr(unsafe.Pointer(pkt.m_body), int(pkt.m_nBytesRead)) } num = int(pkt.m_nBodySize - pkt.m_nBytesRead) if num > s2 { num = s2 } memmove(enc,buf,uintptr(num)) //copy(ptrToSlice(enc, num), ptrToSlice(buf, num)) pkt.m_nBytesRead += C.uint(num) s2 -= num buf = incBytePtr(buf, num) if pkt.m_nBytesRead == pkt.m_nBodySize { // TODO: Port this ret = int(C.RTMP_SendPacket(r, pkt, 0)) // TODO: Port this C.RTMPPacket_Free(pkt) pkt.m_nBytesRead = 0 if ret == 0 { return -1 } buf = incBytePtr(buf, 4) s2 -= 4 if s2 < 0 { break } } } return size + s2 } func sendPacket(r *C.RTMP, packet *C.RTMPPacket, queue int) int { var prevPacket *C.RTMPPacket last := 0 var nSize, hSize, cSize, nChunkSize, tlen int var header, hptr, hend, buffer, tbuf, toff unsafe.Pointer var goHbuf [C.RTMP_MAX_HEADER_SIZE]byte var hbuf = unsafe.Pointer(&goHbuf[0]) var c byte var t int32 if packet.m_nChannel >= r.m_channelsAllocatedOut { n := int(packet.m_nChannel+10) var tmp *C.RTMPPacket packets := C.realloc(unsafe.Pointer(r.m_vecChannelsOut), C.ulong(unsafe.Sizeof(tmp) * uintptr(n))) if uintptr(packets) == uintptr(0) { C.free(unsafe.Pointer(r.m_vecChannelsOut)) r.m_vecChannelsOut = nil r.m_channelsAllocatedOut = 0 return 0 } r.m_vecChannelsOut = (**C.RTMPPacket)(packets) C.memset(incPtr(unsafe.Pointer(r.m_vecChannelsOut), int(r.m_channelsAllocatedOut), int(unsafe.Sizeof(tmp))), 0, C.ulong(unsafe.Sizeof(tmp) * uintptr(n-int(r.m_channelsAllocatedOut)))) r.m_channelsAllocatedOut = C.int(n) } prevPacket = *(**C.RTMPPacket)(incPtr(unsafe.Pointer(r.m_vecChannelsOut), int(packet.m_nChannel), int(unsafe.Sizeof(packet)))) if prevPacket != nil && packet.m_headerType != RTMP_PACKET_SIZE_LARGE { // compress a bit by using the prev packet's attributes if prevPacket.m_nBodySize == packet.m_nBodySize && prevPacket.m_packetType == packet.m_packetType && packet.m_headerType == RTMP_PACKET_SIZE_MEDIUM { packet.m_headerType = RTMP_PACKET_SIZE_SMALL } if prevPacket.m_nTimeStamp == packet.m_nTimeStamp && packet.m_headerType == RTMP_PACKET_SIZE_SMALL { // TODO: port this constant packet.m_headerType = C.RTMP_PACKET_SIZE_MINIMUM } last = int(prevPacket.m_nTimeStamp) } if packet.m_headerType > 3 { log.Printf("Sanity failed! trying to send header of type: 0x%02x.", packet.m_headerType) return 0 } nSize = int(*(*int)(incInt32Ptr(unsafe.Pointer(&packetSize[0]),int(packet.m_headerType)))) hSize = nSize cSize = 0 t = int32(int(packet.m_nTimeStamp) - last) if packet.m_body != nil { header = decPtr(unsafe.Pointer(packet.m_body), nSize, hend = packet.m_body } else { header = incPtr(hbuf,6) // TODO: be cautious about this sizeof - make sure it works how you think it // does. C code used sizeof(hbuf) where hbuf is a *char hend = incPtr(hbuf,unsafe.Sizeof((*byte)(hbuf))) } switch { case packet.m_nChannel > 319: cSize = 2 case packet.m_nChannel > 63: cSize = 1 } if cSize != 0 { header = decPtr(header,4) hSize = incPtr(hSize,4) log.Printf("Larger timsetamp than 24-bit: 0x%x", t) } hptr = header c = byte(packet.m_headerType) << 6 switch cSize { case 0: c |= byte(packet.m_nChannel) case 1: case 2: c |= byte(1) } *(*byte)(hptr) = byte(tmp >> 8) hptr = incPtr(hptr,1) if nSize > 1 { res := t if t > 0xffffff { res = 0xffffff } hptr = unsafe.Pointer(AMF_EncodeInt24((*C.char)(hptr),(*C.char)(hend), res)) } if nSize > 4 { *(*byte)(hptr) = byte(packet.m_packetType) hptr = unsafe.Pointer(AMF_EncodeInt24((*C.char)(hptr), (*C.char)(hend), packet.m_nbodySize)) } if nSize > 8 { hptr = incPtr(hptr, int(EncodeInt32LE((*C.char)(hptr), packet.m_nInfoField2))) } if t >= 0xffffff { hptr = unsafe.Pointer(AMF_EncodeInt32((*C.char)(hptr), (*C.char)(hend), t)) } nSize = int(packet.m_nBodySize) buffer = unsafe.Pointer(m_body) nChunkSize = int(r.m_outChunkSize) if debugMode { log.Printf("sendPacket: fd=%v, size=%v", r.m_sb.sb_socket, nSize) } // send all chunks in one HTTP request // TODO: port RTMP_FEATURE_HTTP if r.Link.protocol & C.RTMP_FEATURE_HTTP { chunks := (nSize+nChunkSize-1)/nChunkSize if chunks > 1 { tlen = chunks *(cSize+1) +nSize +hSize // TODO: figure out how to do this in go tbuf = C.malloc(tlen) if tbuf == 0 { return 0 } toff = tbuf } } for (nSize + hSize) != 0 { var wrote int if nSize < nChunkSize { nChunkSize = nSize } // TODO: figure out what's happening here: // RTMP_LogHexString(RTMP_LOGDEBUG2, (uint8_t *)header, hSize); // RTMP_LogHexString(RTMP_LOGDEBUG2, (uint8_t *)buffer, nChunkSize); if tbuf != nil { memmove(toff, header, nChunksize + hSize) toff = incPtr(toff, nChunkSize + hSize) } else { // TODO: port this wrote = C.WriteN(r, (*C.char)(header), C.int(nChunkSize+hSize)) if wrote == 0 { return 0 } } nSize -= nChunkSize buffer = incPtr(buffer,nChunkSize) hSize = 0 if nSize > 0 { header = decPtr(buffer, 1) hSize = 1 if cSize != 0 { header = decPtr(header,1) hSize += cSize } if t >= 0xffffff { header = decPtr(header,4) hSize += 4 } *(*byte)(header) = byte(0xc0 | c) if cSize != 0 { tmp := int(packet.m_nChannel) - 64 indxBytePtr(header,1) = byte(tmp & 0xff) if cSize == 2 { indxBytePtr(header,2) = byte(tmp >> 8) } } if t >= 0xffffff { extendedTimestamp := incPtr(header,1+cSize) // TODO: port this C.AMF_EncodeInt32((*C.char)(extendedTimestamp), (*C.char)(incPtr(extendedTimestamp,4)), t) } } } if tbuf != 0 { // TODO: port C.writeN wrote := int(C.WriteN(r, (*C.char)(tbuf), (*C.char)(decPtr(toff,tbuf)))) C.free((*C.char)(tbuf)) tbuf = nil if wrote == 0 { return 0 } } // We invoked a remote method // TODO: port the const if packet.m_packetType == C.RTMP_PACKET_TYPE_INVOKE { // TODO: port C.AVal var method C.AVal var ptr unsafe.Pointer ptr = incPtr(unsafe.Pointer(packet.m_body),1) // TODO: port this C.AMF_DecodeString((*C.char)(ptr), &method) if debugMode { log.Printf("Invoking %v", method.av_val) } // keep it in call queue till result arrives if queue != 0 { var txn int ptr = incPtr(ptr, 3 + int(method.av_len)) // TODO: port this txn = int(C.AMF_DecodeNumber((*C.char)(ptr))) // TODO: port this C.AV_queue(&r.m_methodCalls, &r.m_numCalls, &method, C.int(txn)) } } if indxPtr(unsafe.Pointer(r.m_vecChannelsOut),packet.m_nChannel) == 0 { (*C.char)(indxPtr(r.m_vecChannelsOut)) = C.malloc(unsafe.Sizof(C.RTMPPacket)) } memmove(indxPtr(unsafe.Pointer(r.m_vecChannelsOut),packet.m_nChannel), unsafe.Pointer(packet), unsafe.Sizeof(C.RTMPPacket)) return 1 } /* func writeN(r *C.RTMP, buffer unsafe.Pointer, n int) int { ptr := buffer for n > 0 { var nBytes int if r.Link.protocol & C.RTMP_FEATURE_HTTP { // TODO: port HTTP_POST nbytes = int(C.HTTP_POST(r, C.RTMPT_SEND, (*C.char)(ptr), C.int(n))) } else { // TODO: port this if necessary nBytes = RTMPSockBuf_Send(&r.m_sb, (*C.char)(ptr), C.int(n)) } if nBytes < 0 { // TODO: port this sockerr := int(C.GetSockError()) if debugMode { log.Printf("WriteN, RTMP send error %v (%v bytes)",sockerr, n) } if sockerr == C.EINTR && RTMP_ctrlC == 0 { continue } // TODO: port this C.RTMP_Close(r) n = 1 break } if nBytes == 0 { break } n -= nBytes ptr = incPtr(ptr, nBytes) } return n == 0 } // TODO: port RTMP_METHOD func avQueue(vals **C.RTMP_METHOD, num *int, av *AVal, txn int ) { var tmp unsafe.Pointer if (*num & 0x0f) == 0 { // TODO: work out what to do with the realloc *vals = C.realloc(*vals, (*num+16) * C.int(int(unsafe.sizeof(RTMP_METHOD)))) } tmp := C.malloc(av.av_len + 1 ) memmove(tmp, unsafe.Pointer(av.av_val), int(av.av_len)) indxPtr(tmp,av.av_len) = byte(nullChar) } */ // memmove copies n bytes from "from" to "to". //go:linkname memmove runtime.memmove func memmove(to, from unsafe.Pointer, n uintptr) // indxBytePtr returns a byte at the indx inc give a ptr func indxBytePtr(ptr unsafe.Pointer, inc int) byte { return *(*byte)(incPtr(ptr, inc, byteSize)) } // indxInt32Ptr returns an int32 at the indx inc given a ptr func indxInt32Ptr(ptr unsafe.Pointer, inc int) int32 { return *(*int32)(incPtr(ptr, inc, int32Size)) } // indxInt64Ptr returns an int64 at the indx inc given a ptr func indxInt64Ptr(ptr unsafe.Pointer, inc int) int64 { return *(*int64)(incPtr(ptr, inc, int64Size)) } // incBytePtr returns an unsafe.Pointer to a byte that is inc positive positions // from the passed ptr func incBytePtr(ptr unsafe.Pointer, inc int) unsafe.Pointer { return incPtr(ptr,inc,byteSize) } // incInt32Ptr returns an unsafe.Pointer to an int32 that is inc positive // positions from the passed ptr func incInt32Ptr(ptr unsafe.Pointer, inc int) unsafe.Pointer { return incPtr(ptr,inc,int32Size) } // incInt64Ptr returns an unsafe.Pointer to an int64 that is inc positive // positions from the passed ptr func incInt64Ptr(ptr unsafe.Pointer, inc int) unsafe.Pointer { return incPtr(ptr,inc,int64Size) } // incPtr attempts to replicate C like pointer arithmatic functionality func incPtr(ptr unsafe.Pointer, inc, typeSize int) unsafe.Pointer { return unsafe.Pointer(uintptr(ptr) + uintptr(inc*typeSize)) } // incPtr attempts to replicate C like pointer arithmatic functionality func decPtr(ptr unsafe.Pointer, dec, typeSize int) unsafe.Pointer { return unsafe.Pointer(uintptr(ptr) - uintptr(dec*typeSize)) } // decBytePtr returns an unsafe.Pointer to a byte that is dec negative positions // from ptr func decBytePtr(ptr unsafe.Pointer, dec int) unsafe.Pointer { return decPtr(ptr,dec,byteSize) } // decBytePtr returns an unsafe.Pointer to a int32 that is dec negative positions // from ptr func decInt32Ptr(ptr unsafe.Pointer, dec int) unsafe.Pointer { return decPtr(ptr,dec,int32Size) } // decBytePtr returns an unsafe.Pointer to a int64 that is dec negative positions // from ptr func decInt64Ptr(ptr unsafe.Pointer, dec int) unsafe.Pointer { return decPTr(ptr,dec,int64Size) } // sliceToPtr get's the address of the first data element and returns as unsafe // pointer func sliceToPtr(data []byte) unsafe.Pointer { return unsafe.Pointer(&data[0]) } // ptrToSlice returns a slice given unsafe pointer and size - no allocation and // copying is required - same data is used. func ptrToSlice(data unsafe.Pointer, size int) []byte { var ret []byte shDest := (*reflect.SliceHeader)(unsafe.Pointer(&ret)) shDest.Data = uintptr(data) shDest.Len = size shDest.Cap = size return ret } var rtmpErrs = [...]string{ 1: "rtmp: not connected", 2: "rtmp: write error", 3: "rtmp: not started", } type Err uint func (e Err) Error() string { if 0 <= int(e) && int(e) < len(rtmpErrs) { s := rtmpErrs[e] if s != "" { return s } } return "rtmp: " + strconv.Itoa(int(e)) }