/* NAME adpcm.go AUTHOR Trek Hopton LICENSE adpcm.go is Copyright (C) 2018 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ /* Original IMA/DVI ADPCM specification: (http://www.cs.columbia.edu/~hgs/audio/dvi/IMA_ADPCM.pdf). Reference algorithms for ADPCM compression and decompression are in part 6. */ // Package adpcm provides functions to transcode between PCM and ADPCM. package adpcm import ( "encoding/binary" "fmt" "io" "math" ) const ( byteDepth = 2 // We are working with 16-bit samples. TODO(Trek): make configurable. initSamps = 2 // Number of samples used to initialise the encoder. initBytes = initSamps * byteDepth headBytes = 4 // Number of bytes in the header of ADPCM. samplesPerEnc = 2 // Number of sample encoded at a time eg. 2 16-bit samples get encoded into 1 byte. bytesPerEnc = samplesPerEnc * byteDepth compFact = 4 // In general ADPCM compresses by a factor of 4. ) // Table of index changes (see spec). var indexTable = []int16{ -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8, } // Quantize step size table (see spec). var stepTable = []int16{ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767, } // Encoder is used to encode to ADPCM from PCM data. type Encoder struct { // dst is the destination for ADPCM-encoded data. dst io.Writer est int16 // Estimation of sample based on quantised ADPCM nibble. idx int16 // Index to step used for estimation. } // Decoder is used to decode from ADPCM to PCM data. type Decoder struct { // dst is the destination for PCM-encoded data. dst io.Writer est int16 // Estimation of sample based on quantised ADPCM nibble. idx int16 // Index to step used for estimation. step int16 } // NewEncoder retuns a new ADPCM Encoder. func NewEncoder(dst io.Writer) *Encoder { return &Encoder{dst: dst} } // encodeSample takes a single 16 bit PCM sample and // returns a byte of which the last 4 bits are an encoded ADPCM nibble. func (e *Encoder) encodeSample(sample int16) byte { // Find difference between the sample and the previous estimation. delta := capAdd16(sample, -e.est) // Create and set sign bit for nibble and find absolute value of difference. var nib byte if delta < 0 { nib = 8 delta = -delta } step := stepTable[e.idx] diff := step >> 3 var mask byte = 4 for i := 0; i < 3; i++ { if delta > step { nib |= mask delta = capAdd16(delta, -step) diff = capAdd16(diff, step) } mask >>= 1 step >>= 1 } if nib&8 != 0 { diff = -diff } // Adjust estimated sample based on calculated difference. e.est = capAdd16(e.est, diff) e.idx += indexTable[nib&7] // Check for underflow and overflow. if e.idx < 0 { e.idx = 0 } else if e.idx > int16(len(stepTable)-1) { e.idx = int16(len(stepTable) - 1) } return nib } // calcHead sets the state for the Encoder by running the first sample through // the Encoder, and writing the first sample to the Encoder's io.Writer (dst). // It returns the number of bytes written to the Encoder's destination and the first error encountered. func (e *Encoder) calcHead(sample []byte, pad bool) (int, error) { // Check that we are given 1 sample. if len(sample) != byteDepth { return 0, fmt.Errorf("length of given byte array is: %v, expected: %v", len(sample), byteDepth) } n, err := e.dst.Write(sample) if err != nil { return n, err } _n, err := e.dst.Write([]byte{byte(int16(e.idx))}) if err != nil { return n, err } n += _n if pad { _n, err = e.dst.Write([]byte{0x01}) } else { _n, err = e.dst.Write([]byte{0x00}) } n += _n if err != nil { return n, err } return n, nil } // init initializes the Encoder's estimation to the first uncompressed sample and the index to // point to a suitable quantizer step size. // The suitable step size is the closest step size in the stepTable to half the absolute difference of the first two samples. func (e *Encoder) init(samples []byte) { int1 := int16(binary.LittleEndian.Uint16(samples[:byteDepth])) int2 := int16(binary.LittleEndian.Uint16(samples[byteDepth:initBytes])) e.est = int1 halfDiff := math.Abs(math.Abs(float64(int1)) - math.Abs(float64(int2))/2) closest := math.Abs(float64(stepTable[0]) - halfDiff) var cInd int16 for i, step := range stepTable { if math.Abs(float64(step)-halfDiff) < closest { closest = math.Abs(float64(step) - halfDiff) cInd = int16(i) } } e.idx = cInd } // Write takes a slice of bytes of arbitrary length representing pcm and encodes it into adpcm. // It writes its output to the Encoder's dst. // The number of bytes written out is returned along with any error that occured. func (e *Encoder) Write(b []byte) (int, error) { // Check that pcm has enough data to initialize Decoder. pcmLen := len(b) if pcmLen < initBytes { return 0, fmt.Errorf("length of given byte array must be >= %v", initBytes) } // Determine if there will be a byte that won't contain two full nibbles and will need padding. pad := false if (pcmLen-byteDepth)%bytesPerEnc != 0 { pad = true } e.init(b[:initBytes]) n, err := e.calcHead(b[:byteDepth], pad) if err != nil { return n, err } // Skip the first sample and start at the end of the first two samples, then every two samples encode them into a byte of adpcm. for i := byteDepth; i+bytesPerEnc-1 < pcmLen; i += bytesPerEnc { nib1 := e.encodeSample(int16(binary.LittleEndian.Uint16(b[i : i+byteDepth]))) nib2 := e.encodeSample(int16(binary.LittleEndian.Uint16(b[i+byteDepth : i+bytesPerEnc]))) _n, err := e.dst.Write([]byte{byte((nib2 << 4) | nib1)}) n += _n if err != nil { return n, err } } // If we've reached the end of the pcm data and there's a sample left over, // compress it to a nibble and leave the first half of the byte padded with 0s. if pad { nib := e.encodeSample(int16(binary.LittleEndian.Uint16(b[pcmLen-byteDepth : pcmLen]))) _n, err := e.dst.Write([]byte{nib}) n += _n if err != nil { return n, err } } return n, nil } // NewDecoder retuns a new ADPCM Decoder. func NewDecoder(dst io.Writer) *Decoder { return &Decoder{dst: dst} } // decodeSample takes a byte, the last 4 bits of which contain a single // 4 bit ADPCM nibble, and returns a 16 bit decoded PCM sample. func (d *Decoder) decodeSample(nibble byte) int16 { // Calculate difference. var diff int16 if nibble&4 != 0 { diff = capAdd16(diff, d.step) } if nibble&2 != 0 { diff = capAdd16(diff, d.step>>1) } if nibble&1 != 0 { diff = capAdd16(diff, d.step>>2) } diff = capAdd16(diff, d.step>>3) // Account for sign bit. if nibble&8 != 0 { diff = -diff } // Adjust estimated sample based on calculated difference. d.est = capAdd16(d.est, diff) // Adjust index into step size lookup table using nibble. d.idx += indexTable[nibble] // Check for overflow and underflow. if d.idx < 0 { d.idx = 0 } else if d.idx > int16(len(stepTable)-1) { d.idx = int16(len(stepTable) - 1) } // Find new quantizer step size. d.step = stepTable[d.idx] return d.est } // Write takes a slice of bytes of arbitrary length representing adpcm and decodes it into pcm. // It writes its output to the Decoder's dst. // The number of bytes written out is returned along with any error that occured. func (d *Decoder) Write(b []byte) (int, error) { // Initialize Decoder with first 4 bytes of b. d.est = int16(binary.LittleEndian.Uint16(b[:byteDepth])) d.idx = int16(b[byteDepth]) d.step = stepTable[d.idx] n, err := d.dst.Write(b[:byteDepth]) if err != nil { return n, err } // For each byte, seperate it into two nibbles (each nibble is a compressed sample), // then decode each nibble and output the resulting 16-bit samples. // If padding flag is true (b[3]), only decode up until the last byte, then decode that separately. for i := headBytes; i < len(b)-int(b[3]); i++ { twoNibs := b[i] nib2 := byte(twoNibs >> 4) nib1 := byte((nib2 << 4) ^ twoNibs) firstBytes := make([]byte, byteDepth) binary.LittleEndian.PutUint16(firstBytes, uint16(d.decodeSample(nib1))) _n, err := d.dst.Write(firstBytes) n += _n if err != nil { return n, err } secondBytes := make([]byte, byteDepth) binary.LittleEndian.PutUint16(secondBytes, uint16(d.decodeSample(nib2))) _n, err = d.dst.Write(secondBytes) n += _n if err != nil { return n, err } } if b[3] == 0x01 { padNib := b[len(b)-1] samp := make([]byte, byteDepth) binary.LittleEndian.PutUint16(samp, uint16(d.decodeSample(padNib))) _n, err := d.dst.Write(samp) n += _n if err != nil { return n, err } } return n, nil } // capAdd16 adds two int16s together and caps at max/min int16 instead of overflowing func capAdd16(a, b int16) int16 { c := int32(a) + int32(b) switch { case c < math.MinInt16: return math.MinInt16 case c > math.MaxInt16: return math.MaxInt16 default: return int16(c) } } // EncBytes will return the number of adpcm bytes that will be generated when encoding the given amount of pcm bytes (n). func EncBytes(n int) int { // For 'n' pcm bytes, 1 sample is left uncompressed, the rest is compressed by a factor of 4 // and a start index and padding-flag byte are added. // Also if there are an even number of samples, there will be half a byte of padding added to the last byte. if n%bytesPerEnc == 0 { return (n-byteDepth)/compFact + headBytes + 1 } return (n-byteDepth)/compFact + headBytes }