/* NAME audio.go AUTHOR Alan Noble Trek Hopton LICENSE This file is Copyright (C) 2019 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ // Package audio provides access to input from audio devices. package audio import ( "bytes" "errors" "fmt" "sync" "time" "github.com/yobert/alsa" "bitbucket.org/ausocean/av/codec/adpcm" "bitbucket.org/ausocean/av/codec/codecutil" "bitbucket.org/ausocean/av/codec/pcm" "bitbucket.org/ausocean/utils/logger" "bitbucket.org/ausocean/utils/ring" ) const ( pkg = "pkg: " rbTimeout = 100 * time.Millisecond rbNextTimeout = 100 * time.Millisecond rbLen = 200 defaultSampleRate = 48000 ) const ( running = iota paused stopped ) // Rates contains the standard audio sample rates used by package audio. var Rates = [8]int{8000, 16000, 32000, 44100, 48000, 88200, 96000, 192000} // Device holds everything we need to know about the audio input stream. type Device struct { l Logger // Operating mode, either running, paused, or stopped. // "running" means the input goroutine is reading from the ALSA device and writing to the ringbuffer. // "paused" means the input routine is sleeping until unpaused or stopped. // "stopped" means the input routine is stopped and the ALSA device is closed. mode uint8 mu sync.Mutex title string // Name of audio title, or empty for the default title. dev *alsa.Device // Audio input device. ab alsa.Buffer // ALSA's buffer. rb *ring.Buffer // Our buffer. chunkSize int // This is the number of bytes that will be stored at a time. *Config } // Config provides parameters used by Device. type Config struct { SampleRate int Channels int BitDepth int RecPeriod float64 Codec uint8 } // Logger enables any implementation of a logger to be used. // TODO: Make this part of the logger package. type Logger interface { SetLevel(int8) Log(level int8, message string, params ...interface{}) } // NewDevice initializes and returns an Device which can be started, read from, and stopped. func NewDevice(cfg *Config, l Logger) (*Device, error) { d := &Device{ Config: cfg, l: l, } // Open the requested audio device. err := d.open() if err != nil { d.l.Log(logger.Error, pkg+"failed to open device") return nil, err } // Setup the device to record with desired period. d.ab = d.dev.NewBufferDuration(time.Duration(d.RecPeriod * float64(time.Second))) // Account for channel conversion. chunkSize := float64(len(d.ab.Data) / d.dev.BufferFormat().Channels * d.Channels) // Account for resampling. chunkSize = (chunkSize / float64(d.dev.BufferFormat().Rate)) * float64(d.SampleRate) if chunkSize < 1 { return nil, errors.New("given Config parameters are too small") } // Account for codec conversion. if d.Codec == codecutil.ADPCM { d.chunkSize = adpcm.EncBytes(int(chunkSize)) } else { d.chunkSize = int(chunkSize) } // Create ring buffer with appropriate chunk size. d.rb = ring.NewBuffer(rbLen, d.chunkSize, rbTimeout) // Start device in paused mode. d.mode = paused go d.input() return d, nil } // Start will start recording audio and writing to the ringbuffer. func (d *Device) Start() error { d.mu.Lock() mode := d.mode d.mu.Unlock() switch mode { case paused: d.mu.Lock() d.mode = running d.mu.Unlock() return nil case stopped: // TODO(Trek): Make this reopen device and start recording. return errors.New("device is stopped") case running: return nil default: return errors.New("invalid mode") } } // Stop will stop recording audio and close the device. func (d *Device) Stop() { d.mu.Lock() d.mode = stopped d.mu.Unlock() } // ChunkSize returns the number of bytes written to the ringbuffer per d.RecPeriod. func (d *Device) ChunkSize() int { return d.chunkSize } // open the recording device with the given name and prepare it to record. // If name is empty, the first recording device is used. func (d *Device) open() error { // Close any existing device. if d.dev != nil { d.l.Log(logger.Debug, pkg+"closing device", "title", d.title) d.dev.Close() d.dev = nil } // Open sound card and open recording device. d.l.Log(logger.Debug, pkg+"opening sound card") cards, err := alsa.OpenCards() if err != nil { d.l.Log(logger.Debug, pkg+"failed to open sound card") return err } defer alsa.CloseCards(cards) d.l.Log(logger.Debug, pkg+"finding audio device") for _, card := range cards { devices, err := card.Devices() if err != nil { continue } for _, dev := range devices { if dev.Type != alsa.PCM || !dev.Record { continue } if dev.Title == d.title || d.title == "" { d.dev = dev break } } } if d.dev == nil { d.l.Log(logger.Debug, pkg+"failed to find audio device") return errors.New("no audio device found") } d.l.Log(logger.Debug, pkg+"opening audio device", "title", d.dev.Title) err = d.dev.Open() if err != nil { d.l.Log(logger.Debug, pkg+"failed to open audio device") return err } // 2 channels is what most devices need to record in. If mono is requested, // the recording will be converted in formatBuffer(). devChan, err := d.dev.NegotiateChannels(2) if err != nil { return err } d.l.Log(logger.Debug, pkg+"alsa device channels set", "channels", devChan) // Try to negotiate a rate to record in that is divisible by the wanted rate // so that it can be easily downsampled to the wanted rate. // Note: if a card thinks it can record at a rate but can't actually, this can cause a failure. // Eg. the audioinjector sound card is supposed to record at 8000Hz and 16000Hz but it can't due to a firmware issue, // a fix for this is to remove 8000 and 16000 from the Rates slice. foundRate := false var devRate int for i := 0; i < len(Rates) && !foundRate; i++ { if Rates[i] < d.SampleRate { continue } if Rates[i]%d.SampleRate == 0 { devRate, err = d.dev.NegotiateRate(Rates[i]) if err == nil { foundRate = true d.l.Log(logger.Debug, pkg+"alsa device sample rate set", "rate", devRate) } } } // If no easily divisible rate is found, then use the default rate. if !foundRate { d.l.Log(logger.Warning, pkg+"Unable to sample at requested rate, default used.", "rateRequested", d.SampleRate) devRate, err = d.dev.NegotiateRate(defaultSampleRate) if err != nil { return err } d.l.Log(logger.Debug, pkg+"alsa device sample rate set", "rate", devRate) } var aFmt alsa.FormatType switch d.BitDepth { case 16: aFmt = alsa.S16_LE case 32: aFmt = alsa.S32_LE default: return fmt.Errorf("unsupported sample bits %v", d.BitDepth) } devFmt, err := d.dev.NegotiateFormat(aFmt) if err != nil { return err } var devBits int switch devFmt { case alsa.S16_LE: devBits = 16 case alsa.S32_LE: devBits = 32 default: return fmt.Errorf("unsupported sample bits %v", d.BitDepth) } d.l.Log(logger.Debug, pkg+"alsa device bit depth set", "bitdepth", devBits) // A 50ms period is a sensible value for low-ish latency. (this could be made configurable if needed) // Some devices only accept even period sizes while others want powers of 2. // So we will find the closest power of 2 to the desired period size. const wantPeriod = 0.05 //seconds secondSize := devRate * devChan * (devBits / 8) wantPeriodSize := int(float64(secondSize) * wantPeriod) nearWantPeriodSize := nearestPowerOfTwo(wantPeriodSize) devPeriodSize, err := d.dev.NegotiatePeriodSize(nearWantPeriodSize) if err != nil { return err } d.l.Log(logger.Debug, pkg+"alsa device period size set", "periodsize", devPeriodSize) devBufferSize, err := d.dev.NegotiateBufferSize(devPeriodSize * 2) if err != nil { return err } d.l.Log(logger.Debug, pkg+"alsa device buffer size set", "buffersize", devBufferSize) if err = d.dev.Prepare(); err != nil { return err } d.l.Log(logger.Debug, pkg+"successfully negotiated ALSA params") return nil } // input continously records audio and writes it to the ringbuffer. // Re-opens the device and tries again if ASLA returns an error. func (d *Device) input() { for { // Check mode. d.mu.Lock() mode := d.mode d.mu.Unlock() switch mode { case paused: time.Sleep(time.Duration(d.RecPeriod) * time.Second) continue case stopped: if d.dev != nil { d.l.Log(logger.Debug, pkg+"closing audio device", "title", d.title) d.dev.Close() d.dev = nil } return } // Read from audio device. d.l.Log(logger.Debug, pkg+"recording audio for period", "seconds", d.RecPeriod) err := d.dev.Read(d.ab.Data) if err != nil { d.l.Log(logger.Debug, pkg+"read failed", "error", err.Error()) err = d.open() // re-open if err != nil { d.l.Log(logger.Fatal, pkg+"reopening device failed", "error", err.Error()) return } continue } // Process audio. d.l.Log(logger.Debug, pkg+"processing audio") toWrite := d.formatBuffer() // Write audio to ringbuffer. n, err := d.rb.Write(toWrite.Data) switch err { case nil: d.l.Log(logger.Debug, pkg+"wrote audio to ringbuffer", "length", n) case ring.ErrDropped: d.l.Log(logger.Warning, pkg+"old audio data overwritten") default: d.l.Log(logger.Error, pkg+"unexpected ringbuffer error", "error", err.Error()) return } } } // Read reads from the ringbuffer, returning the number of bytes read upon success. func (d *Device) Read(p []byte) (int, error) { // Ready ringbuffer for read. _, err := d.rb.Next(rbNextTimeout) if err != nil { return 0, err } // Read from ring buffer. n, err := d.rb.Read(p) if err != nil { return 0, err } return n, nil } // formatBuffer returns audio that has been converted to the desired format. func (d *Device) formatBuffer() alsa.Buffer { var err error // If nothing needs to be changed, return the original. if d.ab.Format.Channels == d.Channels && d.ab.Format.Rate == d.SampleRate { return d.ab } var formatted alsa.Buffer if d.ab.Format.Channels != d.Channels { // Convert channels. // TODO(Trek): Make this work for conversions other than stereo to mono. if d.ab.Format.Channels == 2 && d.Channels == 1 { formatted, err = pcm.StereoToMono(d.ab) if err != nil { d.l.Log(logger.Fatal, pkg+"channel conversion failed", "error", err.Error()) } } } if d.ab.Format.Rate != d.SampleRate { // Convert rate. formatted, err = pcm.Resample(formatted, d.SampleRate) if err != nil { d.l.Log(logger.Fatal, pkg+"rate conversion failed", "error", err.Error()) } } switch d.Codec { case codecutil.PCM: case codecutil.ADPCM: b := bytes.NewBuffer(make([]byte, 0, adpcm.EncBytes(len(formatted.Data)))) enc := adpcm.NewEncoder(b) _, err = enc.Write(formatted.Data) if err != nil { d.l.Log(logger.Fatal, pkg+"unable to encode", "error", err.Error()) } formatted.Data = b.Bytes() default: d.l.Log(logger.Error, pkg+"unhandled audio codec") } return formatted } // nearestPowerOfTwo finds and returns the nearest power of two to the given integer. // If the lower and higher power of two are the same distance, it returns the higher power. // For negative values, 1 is returned. func nearestPowerOfTwo(n int) int { if n <= 0 { return 1 } if n == 1 { return 2 } v := n v-- v |= v >> 1 v |= v >> 2 v |= v >> 4 v |= v >> 8 v |= v >> 16 v++ // higher power of 2 x := v >> 1 // lower power of 2 if (v - n) > (n - x) { return x } return v }