/* NAME revid - a testbed for re-muxing and re-directing video streams as MPEG-TS over various protocols. DESCRIPTION See Readme.md AUTHOR Alan Noble LICENSE revid is Copyright (C) 2017 Alan Noble. It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with revid in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ // revid is a testbed for re-muxing and re-directing video streams as MPEG-TS over various protocols. package main import ( "bufio" "bytes" "encoding/binary" "flag" "fmt" "io" "io/ioutil" "log" "math/rand" "net" "net/http" "os/exec" "strconv" "strings" "time" "github.com/Comcast/gots/packet" "github.com/Comcast/gots/packet/adaptationfield" "github.com/Comcast/gots/psi" ) // program modes const ( File = iota HTTP UDP RTP Dump ) // defaults and networking consts const ( defaultPid = 256 defaultFrameRate = 25 defaultHTTPOutput = "http://localhost:8080?" defaultUDPOutput = "udp://0.0.0.0:16384" defaultRTPOutput = "rtp://0.0.0.0:16384" mp2tPacketSize = 188 // MPEG-TS packet size mp2tMaxPackets = 2016 // # first multiple of 7 and 8 greater than 2000 UDPPackets = 7 // # of UDP packets per ethernet frame (8 is the max) RTPPackets = 7 // # of RTP packets per ethernet frame (7 is the max) RTPHeaderSize = 12 RTPSSRC = 1 // any value will do ffmpegPath = "/usr/bin/ffmpeg" ) // flags const ( filterFixPTS = 0x0001 filterDropAudio = 0x0002 filterScale640 = 0x0004 filterScale320 = 0x0008 filterFixContinuity = 0x0010 dumpProgramInfo = 0x0100 // 256 dumpPacketStats = 0x0200 // 512 dumpPacketHeader = 0x0400 // 1024 dumpPacketPayload = 0x0800 // 2048 ) // globals var ( sendClip = sendClipToRTP packetsPerFrame = RTPPackets flags *int frameRate *int selectedPid *int clipCount int expectCC int dumpCC int dumpPcrBase uint64 RTPSequenceNum uint16 ) func main() { var ( input = flag.String("i", "", "Input RTSP URL") output = flag.String("o", "", "Output URL (HTTP, UDP or RTP)") mode = flag.String("m", "r", "Mode: one of f,h,u,r or d") ) flags = flag.Int("f", 0, "Flags: see readme for explanation") frameRate = flag.Int("r", defaultFrameRate, "Input video frame rate (25fps by default)") selectedPid = flag.Int("p", defaultPid, "Select packets with this packet ID (PID)") flag.Parse() if *input == "" { log.Fatal("Input (-i) required\n") } switch *mode { case "f": sendClip = sendClipToFile case "h": sendClip = sendClipToHTTP if *output == "" { *output = defaultHTTPOutput } case "u": sendClip = sendClipToUDP packetsPerFrame = UDPPackets if *output == "" { *output = defaultUDPOutput } case "r": sendClip = sendClipToRTP packetsPerFrame = RTPPackets if *output == "" { *output = defaultRTPOutput } case "d": sendClip = sendClipToStdout default: log.Fatal("Invalid mode %s\n", *mode) } if *flags&filterFixContinuity != 0 && *flags&dumpProgramInfo != 0 { log.Fatal("Cannot combine filterFixContinuity and dumpProgramInfo flags\n") } for { _ = readWriteVideo(*input, *output) fmt.Printf("Trying again in 10s\n") time.Sleep(1e10 * time.Nanosecond) } } // readWriteVideo reads video from an RTSP stream (specified by the input URL) and // rewrites the video in various formats and/or different protocols (HTTP, UDP or RTP). func readWriteVideo(input string, output string) error { fmt.Printf("Reading video from %s\n", input) var videoArg, audioArg [2]string if *flags&(filterFixPTS|*flags&filterScale640|*flags&filterScale320) == 0 { videoArg[0] = "-vcodec" videoArg[1] = "copy" } else { videoArg[0] = "-vf" videoArg[1] = "" if *flags&filterFixPTS != 0 { videoArg[1] += "setpts='PTS-STARTPTS'" // start counting PTS from zero } if *flags&filterScale640 != 0 { videoArg[1] += ", scale=640:352" } else if *flags&filterScale320 != 0 { videoArg[1] += ", scale=320:176" } } if *flags&filterDropAudio == 0 { audioArg[0] = "-acodec" audioArg[1] = "copy" } else { audioArg[0] = "-an" audioArg[1] = "" } fmt.Printf("Executing: %s -r %d -i %s %s \"%s\" %s %s -f mpegts -\n", ffmpegPath, *frameRate, input, videoArg[0], videoArg[1], audioArg[0], audioArg[1]) var cmd *exec.Cmd if audioArg[1] == "" { cmd = exec.Command(ffmpegPath, "-r", strconv.Itoa(*frameRate), "-i", input, videoArg[0], videoArg[1], audioArg[0], "-f", "mpegts", "-") } else { cmd = exec.Command(ffmpegPath, "-r", strconv.Itoa(*frameRate), "-i", input, videoArg[0], videoArg[1], audioArg[0], audioArg[1], "-f", "mpegts", "-") } stdout, err := cmd.StdoutPipe() if err != nil { fmt.Printf("Error creating pipe: %s\n", err) return err } err = cmd.Start() if err != nil { fmt.Printf("Error starting pipe: %s\n", err) return err } // (re)initialize globals clipCount = 0 expectCC = -1 dumpCC = -1 dumpPcrBase = 0 RTPSequenceNum = uint16(rand.Intn(1 << 15)) // for UDP and RTP only dial once var conn net.Conn if strings.Index(output, "udp://") == 0 || strings.Index(output, "rtp://") == 0 { conn, err = net.Dial("udp", output[6:]) if err != nil { fmt.Printf("Error dialing %s: %s\n", output, err) return err } defer conn.Close() } br := bufio.NewReader(stdout) pkt := make([]byte, mp2tPacketSize) clip := make([]byte, mp2tMaxPackets*mp2tPacketSize) clipSize := 0 packetCount := 0 prevTime := time.Now() fmt.Printf("Looping\n") for { _, err := io.ReadFull(br, pkt) if err != nil { fmt.Printf("Error reading from ffmpeg: %s\n", err) return err } if *flags&filterFixContinuity != 0 && mp2tFixContinuity(pkt, packetCount, (uint16)(*selectedPid)) { fmt.Printf("Packet #%d.%d fixed\n", clipCount, packetCount) } copy(clip[clipSize:], pkt) packetCount++ clipSize += mp2tPacketSize // send if (1) our buffer is full or (2) 1 second has elapsed and we have % packetsPerFrame if (packetCount == mp2tMaxPackets) || (time.Now().Sub(prevTime) > 1*time.Second && packetCount%packetsPerFrame == 0) { clipCount++ if err = sendClip(clip[:clipSize], output, conn); err != nil { return err } clipSize = 0 packetCount = 0 prevTime = time.Now() } } return nil } // sendClipToFile writes a video clip to a /tmp file. func sendClipToFile(clip []byte, _ string, _ net.Conn) error { filename := fmt.Sprintf("/tmp/vid%03d.ts", clipCount) fmt.Printf("Writing %s (%d bytes)\n", filename, len(clip)) err := ioutil.WriteFile(filename, clip, 0644) if err != nil { fmt.Printf("Error writing file %s: %s\n", filename, err) return err } return nil } // sendClipToHTPP posts a video clip via HTTP, using a new TCP connection each time. func sendClipToHTTP(clip []byte, output string, _ net.Conn) error { URL := output + strconv.Itoa(len(clip)) // NB: append the size to the output fmt.Printf("Posting %s (%d bytes)\n", URL, len(clip)) resp, err := http.Post(URL, "video/mp2t", bytes.NewReader(clip)) // lighter than NewBuffer if err != nil { fmt.Printf("Error posting to %s: %s\n", output, err) return err } defer resp.Body.Close() body, err := ioutil.ReadAll(resp.Body) if err == nil { fmt.Printf(string(body) + "\n") } return err } // sendClipToUDP sends a video clip over UDP. func sendClipToUDP(clip []byte, _ string, conn net.Conn) error { size := UDPPackets * mp2tPacketSize fmt.Printf("Sending %d UDP packets of size %d (%d bytes)\n", len(clip)/size, size, len(clip)) for offset := 0; offset < len(clip); offset += size { pkt := clip[offset : offset+size] _, err := conn.Write(pkt) if err != nil { fmt.Printf("UDP write error %s. Is your player listening?\n", err) return err } } return nil } // sendClipToRTP sends a video clip over RTP. func sendClipToRTP(clip []byte, _ string, conn net.Conn) error { size := RTPPackets * mp2tPacketSize fmt.Printf("Sending %d RTP packets of size %d (%d bytes)\n", len(clip)/size, size+RTPHeaderSize, len(clip)) pkt := make([]byte, RTPHeaderSize+RTPPackets*mp2tPacketSize) for offset := 0; offset < len(clip); offset += size { RTPEncapsulate(clip[offset:offset+size], pkt) _, err := conn.Write(pkt) if err != nil { fmt.Printf("RTP write error %s. Is your player listening?\n", err) return err } } return nil } // sendClipToStdout dumps video stats to stdout. func sendClipToStdout(clip []byte, _ string, _ net.Conn) error { fmt.Printf("Dumping clip (%d bytes)\n", len(clip)) if *flags&dumpProgramInfo != 0 { return mp2tDumpProgram(clip) } packetCount := 0 discontinuities := 0 var cc int for offset := 0; offset < len(clip); offset += mp2tPacketSize { packetCount++ pkt := clip[offset : offset+mp2tPacketSize] pktPid, err := packet.Pid(pkt) if err != nil { return err } if pktPid != (uint16)(*selectedPid) { continue } if *flags&(dumpPacketHeader|dumpPacketPayload) != 0 { fmt.Printf("Packet #%d.%d\n", clipCount, packetCount) } hasPayload := pkt[3]&0x10 != 0 if !hasPayload { continue // nothing to do } // extract interesting info from header tei := pkt[1] & 0x80 >> 7 pusi := pkt[1] & 0x40 >> 6 tp := pkt[1] & 0x20 >> 5 tcs := pkt[3] & 0xc0 >> 6 afc := pkt[3] & 0x30 >> 4 cc = int(pkt[3] & 0xf) if dumpCC != -1 && cc != dumpCC { discontinuities++ fmt.Printf("Warning: Packet #%d.%d continuity counter out of order! Got %d, expected %d.\n", clipCount, packetCount, cc, dumpCC) } dumpCC = (cc + 1) % 16 if *flags&dumpPacketHeader != 0 { fmt.Printf("\t\tTEI=%d, PUSI=%d, TP=%d, TSC=%d, AFC=%d, CC=%d\n", tei, pusi, tp, tcs, afc, cc) } if afc == 3 { // adaptation field, followed by payload afl := adaptationfield.Length(pkt) if adaptationfield.HasPCR(pkt) { pcrBase, pcrExt, _ := mp2tGetPcr(pkt) if *flags&dumpPacketHeader != 0 { fmt.Printf("\t\tAFL=%d, PCRbase=%d, PCRext=%d\n", afl, pcrBase, pcrExt) } if pcrBase < dumpPcrBase { fmt.Printf("Warning: PCRbase went backwards!\n") } dumpPcrBase = pcrBase } else if *flags&dumpPacketHeader != 0 { fmt.Printf("\t\tAFL=%d\n", afl) } } if *flags&dumpPacketPayload != 0 { fmt.Printf("\t\tPayload=%x\n", pkt) } } if *flags&dumpPacketStats != 0 { fmt.Printf("%d packets of size %d bytes (%d bytes, %d discontinuites)\n", packetCount, packet.PacketSize, packetCount*packet.PacketSize, discontinuities) } return nil } // mp2tDumpProgram dumps MPEG-TS Program Association Table (PAT) and Program Map Tables (PMT). func mp2tDumpProgram(clip []byte) error { // NB: Comcast API requires a buffered reader reader := bufio.NewReader(bytes.NewReader(clip)) _, err := packet.Sync(reader) if err != nil { fmt.Println("Warning: Bad MPEG-TS sync byte") return err } pat, err := psi.ReadPAT(reader) if err != nil { fmt.Printf("ReadPAT error: %s\n", err) return err } mp2tDumpPat(pat) var pmts []psi.PMT pm := pat.ProgramMap() for pn, pid := range pm { pmt, err := psi.ReadPMT(reader, pid) if err != nil { fmt.Printf("ReadPMT error: %s\n", err) return err } pmts = append(pmts, pmt) mp2tDumpPmt(pn, pmt) } return nil } func mp2tDumpPat(pat psi.PAT) { fmt.Printf("Pat\n") fmt.Printf("\tPMT PIDs %v\n", pat.ProgramMap()) fmt.Printf("\tNumber of Programs %v\n", pat.NumPrograms()) } func mp2tDumpPmt(pn uint16, pmt psi.PMT) { // pn = program number fmt.Printf("Program #%v PMT\n", pn) fmt.Printf("\tPIDs %v\n", pmt.Pids()) fmt.Printf("\tElementary Streams") for _, es := range pmt.ElementaryStreams() { fmt.Printf("\t\tPid %v : StreamType %v\n", es.ElementaryPid(), es.StreamType()) for _, d := range es.Descriptors() { fmt.Printf("\t\t\t%+v\n", d) } } } // Mp2tFixContinuity fixes discontinous MPEG-TS continuity counts (CC) func mp2tFixContinuity(pkt []byte, packetCount int, pid uint16) bool { hasPayload, err := packet.ContainsPayload(pkt) if err != nil { fmt.Printf("Warning: Packet #%d.%d bad.\n", clipCount, packetCount) return false } if !hasPayload { return false } if pktPid, _ := packet.Pid(pkt); pktPid != pid { return false } fixed := false // extract continuity counter from 2nd nibble of 4th byte of header cc := int(pkt[3] & 0xf) if expectCC == -1 { expectCC = cc } else if cc != expectCC { pkt[3] = pkt[3]&0xf0 | byte(expectCC&0xf) fixed = true } expectCC = (expectCC + 1) % 16 return fixed } // Mp2tGetPcr extracts the Program Clock Reference (PCR) from an MPEG-TS packet (if any) func mp2tGetPcr(pkt []byte) (uint64, uint32, bool) { if !adaptationfield.HasPCR(pkt) { return 0, 0, false } pcrBytes, _ := adaptationfield.PCR(pkt) // 6 bytes // first 33 bits are PCR base, next 6 bits are reserved, final 9 bits are PCR extension. pcrBase := uint64(binary.BigEndian.Uint32(pcrBytes[:4]))<<1 | uint64(pcrBytes[4]&0x80>>7) pcrExt := uint32(pcrBytes[4]&0x01)<<1 | uint32(pcrBytes[5]) return pcrBase, pcrExt, true } // RTPEncapsulate encapsulates MPEG-TS packets within an RTP header, // setting the payload type accordingly (to 33) and incrementing the RTP sequence number. func RTPEncapsulate(mp2tPacket []byte, pkt []byte) { // RTP packet encapsulates the MP2T // first 12 bytes is the header // byte 0: version=2, padding=0, extension=0, cc=0 pkt[0] = 0x80 // version (2) // byte 1: marker=0, pt = 33 (MP2T) pkt[1] = 33 // bytes 2 & 3: sequence number binary.BigEndian.PutUint16(pkt[2:4], RTPSequenceNum) if RTPSequenceNum == ^uint16(0) { RTPSequenceNum = 0 } else { RTPSequenceNum++ } // bytes 4,5,6&7: timestamp timestamp := uint32(time.Now().UnixNano() / 1e6) // ms timestamp binary.BigEndian.PutUint32(pkt[4:8], timestamp) // bytes 8,9,10&11: SSRC binary.BigEndian.PutUint32(pkt[8:12], RTPSSRC) // payload follows copy(pkt[RTPHeaderSize:RTPHeaderSize+RTPPackets*mp2tPacketSize], mp2tPacket) }