/* NAME encoder.go AUTHOR Dan Kortschak Saxon Nelson-Milton LICENSE encoder.go is Copyright (C) 2017-2018 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with revid in gpl.txt. If not, see http://www.gnu.org/licenses. */ package mts import ( "fmt" "io" "strconv" "time" "bitbucket.org/ausocean/av/codec/h264" "bitbucket.org/ausocean/av/codec/h264/h264dec" "bitbucket.org/ausocean/av/container/mts/meta" "bitbucket.org/ausocean/av/container/mts/pes" "bitbucket.org/ausocean/av/container/mts/psi" "bitbucket.org/ausocean/utils/realtime" ) // Stream IDs as per ITU-T Rec. H.222.0 / ISO/IEC 13818-1 [1], tables 2-22 and 2-34. const ( H264ID = 27 H265ID = 36 MJPEGID = 28 audioStreamID = 0xc0 // ADPCM audio stream ID. ) // Constants used to communicate which media codec will be packetized. const ( EncodeH264 = iota EncodeH265 EncodeMJPEG EncodeAudio ) // The program IDs we assign to different types of media. const ( VideoPid = 256 AudioPid = 210 ) // Time-related constants. const ( // ptsOffset is the offset added to the clock to determine // the current presentation timestamp. ptsOffset = 700 * time.Millisecond // PCRFrequency is the base Program Clock Reference frequency in Hz. PCRFrequency = 90000 // PTSFrequency is the presentation timestamp frequency in Hz. PTSFrequency = 90000 // MaxPTS is the largest PTS value (i.e., for a 33-bit unsigned integer). MaxPTS = (1 << 33) - 1 ) // If we are not using NAL based PSI intervals then we will send PSI every 7 packets. const psiSendCount = 7 const ( hasPayload = 0x1 hasAdaptationField = 0x2 ) const ( hasDTS = 0x1 hasPTS = 0x2 ) // Some common manifestations of PSI. var ( // StandardPAT is a minimal PAT. StandardPAT = psi.PSI{ Pf: 0x00, Tid: 0x00, Ssi: true, Pb: false, Sl: 0x0d, Tss: &psi.TSS{ Tide: 0x01, V: 0, Cni: true, Sn: 0, Lsn: 0, Sd: &psi.PAT{ Pn: 0x01, Pmpid: 0x1000, }, }, } // Base PMT is a minimal PMT without specific data. BasePMT = psi.PSI{ Pf: 0x00, Tid: 0x02, Ssi: true, Sl: 0x12, Tss: &psi.TSS{ Tide: 0x01, V: 0, Cni: true, Sn: 0, Lsn: 0, }, } ) // Meta allows addition of metadata to encoded mts from outside of this pkg. // See meta pkg for usage. // // TODO: make this not global. var Meta *meta.Data // This will help us obtain a realtime for timestamp meta encoding. var RealTime = realtime.NewRealTime() var ( patTable = StandardPAT.Bytes() pmtTable []byte ) // Encoder encapsulates properties of an MPEG-TS generator. type Encoder struct { dst io.WriteCloser clock time.Duration lastTime time.Time writePeriod time.Duration ptsOffset time.Duration tsSpace [PacketSize]byte pesSpace [pes.MaxPesSize]byte continuity map[uint16]byte psiMethod int pktCount int psiSendCount int psiTime time.Duration temp time.Duration startTime time.Time mediaPid uint16 streamID byte } // NewEncoder returns an Encoder with the specified media type and rate eg. if a video stream // calls write for every frame, the rate will be the frame rate of the video. func NewEncoder(dst io.WriteCloser, rate float64, mediaType int, options ...func(*Encoder) error) (*Encoder, error) { var mPID uint16 var sID byte psim := timeBased switch mediaType { case EncodeAudio: mPID = AudioPid sID = audioStreamID psim = pktBased case EncodeH265: mPID = VideoPid sID = H265ID psim = nalBased case EncodeH264: mPID = VideoPid sID = H264ID psim = nalBased case EncodeMJPEG: mPID = VideoPid sID = MJPEGID psim = timeBased } pmt := BasePMT pmt.Tss.Sd = &psi.PMT{ Pcrpid: 0x0100, Pil: 0, Essd: &psi.ESSD{ St: byte(sID), Epid: mPID, Esil: 0x00, }, } pmtTable = pmt.Bytes() e := &Encoder{ dst: dst, writePeriod: time.Duration(float64(time.Second) / rate), ptsOffset: ptsOffset, psiMethod: psim, pktCount: 8, mediaPid: mPID, streamID: sID, continuity: map[uint16]byte{ PatPid: 0, PmtPid: 0, mPID: 0, }, } for _, option := range options { err := option(e) if err != nil { return nil, fmt.Errorf("option failed with error: %w", err) } } return e, nil } const ( pktBased = iota timeBased nalBased ) // PacketBasedPSI is an option that can be passed to NewEncoder to select // packet based PSI writing, i.e. PSI are written to the destination every // sendCount packets. func PacketBasedPSI(sendCount int) func(*Encoder) error { return func(e *Encoder) error { e.psiMethod = pktBased e.psiSendCount = sendCount e.pktCount = e.psiSendCount return nil } } func TimeBasedPSI(timeBetweenPSI time.Duration) func(*Encoder) error { return func(e *Encoder) error { e.psiMethod = timeBased e.psiTime = 0 e.temp = timeBetweenPSI e.startTime = time.Now() return nil } } // Write implements io.Writer. Write takes raw video or audio data and encodes into MPEG-TS, // then sending it to the encoder's io.Writer destination. func (e *Encoder) Write(data []byte) (int, error) { switch e.psiMethod { case pktBased: if e.pktCount >= e.psiSendCount { e.pktCount = 0 err := e.writePSI() if err != nil { return 0, err } } case nalBased: nalType, err := h264.NALType(data) if err != nil { return 0, fmt.Errorf("could not get type from NAL unit, failed with error: %w", err) } if nalType == h264dec.NALTypeSPS { err := e.writePSI() if err != nil { return 0, err } } case timeBased: if time.Now().Sub(e.startTime) >= e.psiTime { e.psiTime = e.temp e.startTime = time.Now() err := e.writePSI() if err != nil { return 0, err } } default: } // Prepare PES data. pesPkt := pes.Packet{ StreamID: e.streamID, PDI: hasPTS, PTS: e.pts(), Data: data, HeaderLength: 5, } buf := pesPkt.Bytes(e.pesSpace[:pes.MaxPesSize]) pusi := true for len(buf) != 0 { pkt := Packet{ PUSI: pusi, PID: uint16(e.mediaPid), RAI: pusi, CC: e.ccFor(e.mediaPid), AFC: hasAdaptationField | hasPayload, PCRF: pusi, } n := pkt.FillPayload(buf) buf = buf[n:] if pusi { // If the packet has a Payload Unit Start Indicator // flag set then we need to write a PCR. pkt.PCR = e.pcr() pusi = false } _, err := e.dst.Write(pkt.Bytes(e.tsSpace[:PacketSize])) if err != nil { return len(data), err } e.pktCount++ } e.tick() return len(data), nil } // writePSI creates MPEG-TS with pat and pmt tables - with pmt table having updated // location and time data. func (e *Encoder) writePSI() error { // Write PAT. patPkt := Packet{ PUSI: true, PID: PatPid, CC: e.ccFor(PatPid), AFC: hasPayload, Payload: psi.AddPadding(patTable), } _, err := e.dst.Write(patPkt.Bytes(e.tsSpace[:PacketSize])) if err != nil { return err } e.pktCount++ pmtTable, err = updateMeta(pmtTable) if err != nil { return err } // Create mts packet from pmt table. pmtPkt := Packet{ PUSI: true, PID: PmtPid, CC: e.ccFor(PmtPid), AFC: hasPayload, Payload: psi.AddPadding(pmtTable), } _, err = e.dst.Write(pmtPkt.Bytes(e.tsSpace[:PacketSize])) if err != nil { return err } e.pktCount++ return nil } // tick advances the clock one frame interval. func (e *Encoder) tick() { e.clock += e.writePeriod } // pts retuns the current presentation timestamp. func (e *Encoder) pts() uint64 { return uint64((e.clock + e.ptsOffset).Seconds() * PTSFrequency) } // pcr returns the current program clock reference. func (e *Encoder) pcr() uint64 { return uint64(e.clock.Seconds() * PCRFrequency) } // ccFor returns the next continuity counter for pid. func (e *Encoder) ccFor(pid uint16) byte { cc := e.continuity[pid] const continuityCounterMask = 0xf e.continuity[pid] = (cc + 1) & continuityCounterMask return cc } // updateMeta adds/updates a metaData descriptor in the given psi bytes using data // contained in the global Meta struct. func updateMeta(b []byte) ([]byte, error) { p := psi.PSIBytes(b) if RealTime.IsSet() { Meta.Add("ts", strconv.Itoa(int(RealTime.Get().Unix()))) } err := p.AddDescriptor(psi.MetadataTag, Meta.Encode()) return []byte(p), err } func (e *Encoder) Close() error { return e.dst.Close() }