/* NAME adpcm.go DESCRIPTION See Readme.md AUTHOR Trek Hopton LICENSE adpcm.go is Copyright (C) 2018 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with revid in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ /* Original IMA/DVI ADPCM specification: (http://www.cs.columbia.edu/~hgs/audio/dvi/IMA_ADPCM.pdf). Reference algorithms for ADPCM compression and decompression are in part 6. */ package adpcm import ( "encoding/binary" "fmt" "math" ) // table of index changes (see spec) var indexTable = []int16{ -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8, } // quantize step size table (see spec) var stepTable = []int16{ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767, } var ( encPred int16 encIndex int16 decPred int16 decIndex int16 decStep int16 = 7 ) // encodeSample takes a single 16 bit PCM sample and // returns a byte of which the last 4 bits are an encoded ADPCM nibble func encodeSample(sample int16) byte { delta := sample - encPred var nibble byte // set sign bit and find absolute value of difference if delta < 0 { nibble = 8 delta = -delta } step := stepTable[encIndex] diff := step >> 3 var mask byte = 4 for i := 0; i < 3; i++ { if delta > step { nibble |= mask delta -= step diff += step } mask >>= 1 step >>= 1 } // adjust predicted sample based on calculated difference if nibble&8 != 0 { encPred = capAdd16(encPred, -diff) } else { encPred = capAdd16(encPred, diff) } // check for underflow and overflow if encPred < math.MinInt16 { encPred = math.MinInt16 } else if encPred > math.MaxInt16 { encPred = math.MaxInt16 } encIndex += indexTable[nibble&7] // check for underflow and overflow if encIndex < 0 { encIndex = 0 } else if encIndex > int16(len(stepTable)-1) { encIndex = int16(len(stepTable) - 1) } return nibble } // decodeSample takes a byte, the last 4 bits of which contain a single // 4 bit ADPCM nibble, and returns a 16 bit decoded PCM sample func decodeSample(nibble byte) int16 { // calculate difference var diff int16 if nibble&4 != 0 { diff += decStep } if nibble&2 != 0 { diff += decStep >> 1 } if nibble&1 != 0 { diff += decStep >> 2 } diff += decStep >> 3 // account for sign bit if nibble&8 != 0 { diff = -diff } // adjust predicted sample based on calculated difference decPred = capAdd16(decPred, diff) // adjust index into step size lookup table using nibble decIndex += indexTable[nibble] // check for overflow and underflow if decIndex < 0 { decIndex = 0 } else if decIndex > int16(len(stepTable)-1) { decIndex = int16(len(stepTable) - 1) } // find new quantizer step size decStep = stepTable[decIndex] return decPred } // capAdd16 adds two int16s together and caps at max/min int16 instead of overflowing func capAdd16(a, b int16) int16 { c := int32(a) + int32(b) switch { case c < math.MinInt16: return math.MinInt16 case c > math.MaxInt16: return math.MaxInt16 default: return int16(c) } } func calcHead(sample []byte) ([]byte, error) { // check that we are given 1 16-bit sample (2 bytes) sampSize := 2 if len(sample) != sampSize { return nil, fmt.Errorf("length of given byte array is: %v, expected: %v", len(sample), sampSize) } intSample := int16(binary.LittleEndian.Uint16(sample)) encodeSample(intSample) head := make([]byte, 2, 4) head[0] = sample[0] head[1] = sample[1] head = append(head, byte(uint16(encIndex))) head = append(head, byte(0x00)) return head, nil } // EncodeBlock takes a slice of 1010 bytes (505 16-bit PCM samples). // It returns a byte slice containing encoded (compressed) ADPCM nibbles (each byte contains two nibbles). func EncodeBlock(block []byte) ([]byte, error) { bSize := 1010 if len(block) != bSize { return nil, fmt.Errorf("unsupported block size. Given: %v, expected: %v, ie. 505 16-bit PCM samples", len(block), bSize) } result, err := calcHead(block[0:2]) if err != nil { return nil, err } for i := 2; i < len(block); i++ { if (i+1)%4 == 0 { sample2 := encodeSample(int16(binary.LittleEndian.Uint16(block[i-1 : i+1]))) sample := encodeSample(int16(binary.LittleEndian.Uint16(block[i+1 : i+3]))) result = append(result, byte((sample<<4)|sample2)) } } return result, nil } // DecodeBlock takes a slice of 256 bytes, each byte should contain two ADPCM encoded nibbles. // It returns a byte slice containing the resulting decoded (uncompressed) 16-bit PCM samples. func DecodeBlock(block []byte) ([]byte, error) { bSize := 256 if len(block) != bSize { return nil, fmt.Errorf("unsupported block size. Given: %v, expected: %v", len(block), bSize) } var result []byte decPred = int16(binary.LittleEndian.Uint16(block[0:2])) decIndex = int16(block[2]) decStep = stepTable[decIndex] result = append(result, block[0:2]...) for i := 4; i < len(block); i++ { originalSample := block[i] secondSample := byte(originalSample >> 4) firstSample := byte((secondSample << 4) ^ originalSample) firstBytes := make([]byte, 2) binary.LittleEndian.PutUint16(firstBytes, uint16(decodeSample(firstSample))) result = append(result, firstBytes...) secondBytes := make([]byte, 2) binary.LittleEndian.PutUint16(secondBytes, uint16(decodeSample(secondSample))) result = append(result, secondBytes...) } return result, nil }