/* NAME adpcm.go DESCRIPTION adpcm.go contains functions for encoding/compressing pcm into adpcm and decoding/decompressing back to pcm. AUTHOR Trek Hopton LICENSE adpcm.go is Copyright (C) 2018 the Australian Ocean Lab (AusOcean) It is free software: you can redistribute it and/or modify them under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License in gpl.txt. If not, see [GNU licenses](http://www.gnu.org/licenses). */ /* Original IMA/DVI ADPCM specification: (http://www.cs.columbia.edu/~hgs/audio/dvi/IMA_ADPCM.pdf). Reference algorithms for ADPCM compression and decompression are in part 6. */ package adpcm import ( "bytes" "encoding/binary" "fmt" ) // encoder is used to encode to ADPCM from PCM data. // pred and index hold state that persists between calls to encodeSample and calcHead. // dest is the output buffer that implements io.writer and io.bytewriter, ie. where the encoded ADPCM data is written to. type encoder struct { dest *bytes.Buffer pred int16 index int16 } // decoder is used to decode from ADPCM to PCM data. // pred, index, and step hold state that persists between calls to decodeSample. // dest is the output buffer that implements io.writer and io.bytewriter, ie. where the decoded PCM data is written to. type decoder struct { dest *bytes.Buffer pred int16 index int16 step int16 } // PcmBS is the size of the blocks that an encoder uses. // 'encodeBlock' will encode PcmBS bytes at a time and the output will be AdpcmBS bytes long. const PcmBS = 1010 // AdpcmBS is the size of the blocks that a decoder uses. // 'decodeBlock' will decode AdpcmBS bytes at a time and the output will be PcmBS bytes long. const AdpcmBS = 256 // Table of index changes (see spec). var indexTable = []int16{ -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8, } // Quantize step size table (see spec). var stepTable = []int16{ 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767, } // NewEncoder retuns a new ADPCM encoder. func NewEncoder(dst *bytes.Buffer) *encoder { e := encoder{ dest: dst, } return &e } // NewDecoder retuns a new ADPCM decoder. func NewDecoder(dst *bytes.Buffer) *decoder { d := decoder{ step: stepTable[0], dest: dst, } return &d } // encodeSample takes a single 16 bit PCM sample and // returns a byte of which the last 4 bits are an encoded ADPCM nibble. func (e *encoder) encodeSample(sample int16) byte { // Find difference of actual sample from encoder's prediction. delta := sample - e.pred // Create and set sign bit for nibble and find absolute value of difference. var nib byte if delta < 0 { nib = 8 delta = -delta } step := stepTable[e.index] diff := step >> 3 var mask byte = 4 for i := 0; i < 3; i++ { if delta > step { nib |= mask delta -= step diff += step } mask >>= 1 step >>= 1 } // Adjust predicted sample based on calculated difference. if nib&8 != 0 { e.pred -= diff } else { e.pred += diff } e.index += indexTable[nib&7] // Check for underflow and overflow. if e.index < 0 { e.index = 0 } else if e.index > int16(len(stepTable)-1) { e.index = int16(len(stepTable) - 1) } return nib } // decodeSample takes a byte, the last 4 bits of which contain a single // 4 bit ADPCM nibble, and returns a 16 bit decoded PCM sample. func (d *decoder) decodeSample(nibble byte) int16 { // Calculate difference. var diff int16 if nibble&4 != 0 { diff += d.step } if nibble&2 != 0 { diff += d.step >> 1 } if nibble&1 != 0 { diff += d.step >> 2 } diff += d.step >> 3 // Account for sign bit. if nibble&8 != 0 { diff = -diff } // Adjust predicted sample based on calculated difference. d.pred += diff // Adjust index into step size lookup table using nibble. d.index += indexTable[nibble] // Check for overflow and underflow. if d.index < 0 { d.index = 0 } else if d.index > int16(len(stepTable)-1) { d.index = int16(len(stepTable) - 1) } // Find new quantizer step size. d.step = stepTable[d.index] return d.pred } // calcHead sets the state for the encoder by running the first sample through // the encoder, and writing the first sample to the encoder's io.Writer (dest). // It returns the number of bytes written to the encoder's io.Writer (dest) along with any errors. func (e *encoder) calcHead(sample []byte) (int, error) { // Check that we are given 1 16-bit sample (2 bytes). const sampSize = 2 if len(sample) != sampSize { return 0, fmt.Errorf("length of given byte array is: %v, expected: %v", len(sample), sampSize) } intSample := int16(binary.LittleEndian.Uint16(sample)) e.encodeSample(intSample) n, err := e.dest.Write(sample) if err != nil { return n, err } err = e.dest.WriteByte(byte(uint16(e.index))) if err != nil { return n, err } n++ err = e.dest.WriteByte(byte(0x00)) if err != nil { return n, err } n++ return n, nil } // encodeBlock takes a slice of 1010 bytes (505 16-bit PCM samples). // It writes encoded (compressed) bytes (each byte containing two ADPCM nibbles) to the encoder's io.Writer (dest). // The number of bytes written is returned along with any errors. // Note: nibbles are output in little endian order, eg. n1n0 n3n2 n5n4... // Note: first 4 bytes are for initializing the decoder before decoding a block. // - First two bytes contain the first 16-bit sample uncompressed. // - Third byte is the decoder's starting index for the block, the fourth is padding and ignored. func (e *encoder) encodeBlock(block []byte) (int, error) { if len(block) != PcmBS { return 0, fmt.Errorf("unsupported block size. Given: %v, expected: %v, ie. 505 16-bit PCM samples", len(block), PcmBS) } n, err := e.calcHead(block[0:2]) if err != nil { return n, err } for i := 3; i < PcmBS; i += 4 { nib1 := e.encodeSample(int16(binary.LittleEndian.Uint16(block[i-1 : i+1]))) nib2 := e.encodeSample(int16(binary.LittleEndian.Uint16(block[i+1 : i+3]))) err = e.dest.WriteByte(byte((nib2 << 4) | nib1)) if err != nil { return n, err } n++ } return n, nil } // decodeBlock takes a slice of 256 bytes, each byte after the first 4 should contain two ADPCM encoded nibbles. // It writes the resulting decoded (decompressed) 16-bit PCM samples to the decoder's io.Writer (dest). // The number of bytes written is returned along with any errors. func (d *decoder) decodeBlock(block []byte) (int, error) { if len(block) != AdpcmBS { return 0, fmt.Errorf("unsupported block size. Given: %v, expected: %v", len(block), AdpcmBS) } // Initialize decoder with first 4 bytes of the block. d.pred = int16(binary.LittleEndian.Uint16(block[0:2])) d.index = int16(block[2]) d.step = stepTable[d.index] n, err := d.dest.Write(block[0:2]) if err != nil { return n, err } // For each byte, seperate it into two nibbles (each nibble is a compressed sample), // then decode each nibble and output the resulting 16-bit samples. for i := 4; i < AdpcmBS; i++ { twoNibs := block[i] nib2 := byte(twoNibs >> 4) nib1 := byte((nib2 << 4) ^ twoNibs) firstBytes := make([]byte, 2) binary.LittleEndian.PutUint16(firstBytes, uint16(d.decodeSample(nib1))) _n, err := d.dest.Write(firstBytes) n += _n if err != nil { return n, err } secondBytes := make([]byte, 2) binary.LittleEndian.PutUint16(secondBytes, uint16(d.decodeSample(nib2))) _n, err = d.dest.Write(secondBytes) n += _n if err != nil { return n, err } } return n, nil } // Write takes a slice of bytes of arbitrary length representing pcm and encodes in into adpcm. // It writes its output to the encoder's dest. // The number of bytes written out is returned along with any error that occured. func (e *encoder) Write(inPcm []byte) (int, error) { numBlocks := len(inPcm) / PcmBS n := 0 for i := 0; i < numBlocks; i++ { block := inPcm[PcmBS*i : PcmBS*(i+1)] _n, err := e.encodeBlock(block) n += _n if err != nil { return n, err } } return n, nil } // Write takes a slice of bytes of arbitrary length representing adpcm and decodes in into pcm. // It writes its output to the decoder's dest. // The number of bytes written out is returned along with any error that occured. func (d *decoder) Write(inAdpcm []byte) (int, error) { numBlocks := len(inAdpcm) / AdpcmBS n := 0 for i := 0; i < numBlocks; i++ { block := inAdpcm[AdpcmBS*i : AdpcmBS*(i+1)] _n, err := d.decodeBlock(block) n += _n if err != nil { return n, err } } return n, nil }