Merged in adpcm-chunks (pull request #237)

Added adpcm chunk length and ability to decode consecutive chunks

Approved-by: kortschak <dan@kortschak.io>
This commit is contained in:
Trek Hopton 2019-08-28 03:30:02 +00:00
commit f537da41f2
2 changed files with 69 additions and 46 deletions

View File

@ -40,10 +40,11 @@ import (
const (
byteDepth = 2 // We are working with 16-bit samples. TODO(Trek): make configurable.
initSamps = 2 // Number of samples used to initialise the encoder.
initBytes = initSamps * byteDepth
headBytes = 4 // Number of bytes in the header of ADPCM.
initSize = initSamps * byteDepth
headSize = 8 // Number of bytes in the header of ADPCM.
samplesPerEnc = 2 // Number of sample encoded at a time eg. 2 16-bit samples get encoded into 1 byte.
bytesPerEnc = samplesPerEnc * byteDepth
chunkLenSize = 4 // Size of the chunk length in bytes, chunk length is a 32 bit number.
compFact = 4 // In general ADPCM compresses by a factor of 4.
)
@ -176,7 +177,7 @@ func (e *Encoder) calcHead(sample []byte, pad bool) (int, error) {
// The suitable step size is the closest step size in the stepTable to half the absolute difference of the first two samples.
func (e *Encoder) init(samples []byte) {
int1 := int16(binary.LittleEndian.Uint16(samples[:byteDepth]))
int2 := int16(binary.LittleEndian.Uint16(samples[byteDepth:initBytes]))
int2 := int16(binary.LittleEndian.Uint16(samples[byteDepth:initSize]))
e.est = int1
halfDiff := math.Abs(math.Abs(float64(int1)) - math.Abs(float64(int2))/2)
@ -197,8 +198,8 @@ func (e *Encoder) init(samples []byte) {
func (e *Encoder) Write(b []byte) (int, error) {
// Check that pcm has enough data to initialize Decoder.
pcmLen := len(b)
if pcmLen < initBytes {
return 0, fmt.Errorf("length of given byte array must be >= %v", initBytes)
if pcmLen < initSize {
return 0, fmt.Errorf("length of given byte array must be >= %v", initSize)
}
// Determine if there will be a byte that won't contain two full nibbles and will need padding.
@ -207,8 +208,18 @@ func (e *Encoder) Write(b []byte) (int, error) {
pad = true
}
e.init(b[:initBytes])
n, err := e.calcHead(b[:byteDepth], pad)
// Write the first 4 bytes of the adpcm chunk, which represent its length, ie. the number of bytes following the chunk length.
chunkLen := EncBytes(pcmLen)
chunkLenBytes := make([]byte, chunkLenSize)
binary.LittleEndian.PutUint32(chunkLenBytes, uint32(chunkLen))
n, err := e.dst.Write(chunkLenBytes)
if err != nil {
return n, err
}
e.init(b[:initSize])
_n, err := e.calcHead(b[:byteDepth], pad)
n += _n
if err != nil {
return n, err
}
@ -284,19 +295,30 @@ func (d *Decoder) decodeSample(nibble byte) int16 {
// It writes its output to the Decoder's dst.
// The number of bytes written out is returned along with any error that occured.
func (d *Decoder) Write(b []byte) (int, error) {
// Initialize Decoder with first 4 bytes of b.
d.est = int16(binary.LittleEndian.Uint16(b[:byteDepth]))
d.idx = int16(b[byteDepth])
// Iterate over each chunk and decode it.
var n int
var chunkLen int
for off := 0; off+headSize <= len(b); off += chunkLen {
// Read length of chunk and check if whole chunk exists.
chunkLen = int(binary.LittleEndian.Uint32(b[off : off+chunkLenSize]))
if off+chunkLen > len(b) {
break
}
// Initialize Decoder with header of b.
d.est = int16(binary.LittleEndian.Uint16(b[off+chunkLenSize : off+chunkLenSize+byteDepth]))
d.idx = int16(b[off+chunkLenSize+byteDepth])
d.step = stepTable[d.idx]
n, err := d.dst.Write(b[:byteDepth])
_n, err := d.dst.Write(b[off+chunkLenSize : off+chunkLenSize+byteDepth])
n += _n
if err != nil {
return n, err
}
// For each byte, seperate it into two nibbles (each nibble is a compressed sample),
// then decode each nibble and output the resulting 16-bit samples.
// If padding flag is true (Adpcm[3]), only decode up until the last byte, then decode that separately.
for i := headBytes; i < len(b)-int(b[3]); i++ {
// If padding flag is true only decode up until the last byte, then decode that separately.
for i := off + headSize; i < off+chunkLen-int(b[off+chunkLenSize+3]); i++ {
twoNibs := b[i]
nib2 := byte(twoNibs >> 4)
nib1 := byte((nib2 << 4) ^ twoNibs)
@ -317,8 +339,8 @@ func (d *Decoder) Write(b []byte) (int, error) {
return n, err
}
}
if b[3] == 0x01 {
padNib := b[len(b)-1]
if b[off+chunkLenSize+3] == 0x01 {
padNib := b[off+chunkLen-1]
samp := make([]byte, byteDepth)
binary.LittleEndian.PutUint16(samp, uint16(d.decodeSample(padNib)))
_n, err := d.dst.Write(samp)
@ -327,6 +349,7 @@ func (d *Decoder) Write(b []byte) (int, error) {
return n, err
}
}
}
return n, nil
}
@ -349,7 +372,7 @@ func EncBytes(n int) int {
// and a start index and padding-flag byte are added.
// Also if there are an even number of samples, there will be half a byte of padding added to the last byte.
if n%bytesPerEnc == 0 {
return (n-byteDepth)/compFact + headBytes + 1
return (n-byteDepth)/compFact + headSize + 1
}
return (n-byteDepth)/compFact + headBytes
return (n-byteDepth)/compFact + headSize
}

View File

@ -51,7 +51,7 @@ func TestEncodeBlock(t *testing.T) {
}
// Read expected adpcm file.
exp, err := ioutil.ReadFile("../../../test/test-data/av/output/encoded_8kHz_adpcm_test.adpcm")
exp, err := ioutil.ReadFile("../../../test/test-data/av/output/encoded_8kHz_adpcm_test2.adpcm")
if err != nil {
t.Errorf("Unable to read expected ADPCM file: %v", err)
}
@ -65,7 +65,7 @@ func TestEncodeBlock(t *testing.T) {
// resulting PCM with the expected decoded PCM.
func TestDecodeBlock(t *testing.T) {
// Read adpcm.
comp, err := ioutil.ReadFile("../../../test/test-data/av/input/encoded_8kHz_adpcm_test.adpcm")
comp, err := ioutil.ReadFile("../../../test/test-data/av/input/encoded_8kHz_adpcm_test2.adpcm")
if err != nil {
t.Errorf("Unable to read input ADPCM file: %v", err)
}
@ -79,7 +79,7 @@ func TestDecodeBlock(t *testing.T) {
}
// Read expected pcm file.
exp, err := ioutil.ReadFile("../../../test/test-data/av/output/decoded_8kHz_adpcm_test.pcm")
exp, err := ioutil.ReadFile("../../../test/test-data/av/output/decoded_8kHz_adpcm_test2.pcm")
if err != nil {
t.Errorf("Unable to read expected PCM file: %v", err)
}