This commit is contained in:
scruzin 2019-09-05 17:13:57 +09:30
commit cce86bb064
18 changed files with 894 additions and 562 deletions

View File

@ -107,7 +107,6 @@ func handleFlags() revid.Config {
var (
cpuprofile = flag.String("cpuprofile", "", "write cpu profile to `file`")
inputCodecPtr = flag.String("InputCodec", "H264", "The codec of the input: H264, Mjpeg, PCM, ADPCM")
inputPtr = flag.String("Input", "", "The input type: Raspivid, File, v4l, Audio, RTSP")
rtspURLPtr = flag.String("RTSPURL", "", "The URL for an RTSP server.")
@ -126,7 +125,6 @@ func handleFlags() revid.Config {
widthPtr = flag.Uint("Width", 0, "Width in pixels")
frameRatePtr = flag.Uint("FrameRate", 0, "Frame rate of captured video")
quantizationPtr = flag.Uint("Quantization", 0, "Desired quantization value: 0-40")
intraRefreshPeriodPtr = flag.Uint("IntraRefreshPeriod", 0, "The IntraRefreshPeriod i.e. how many keyframes we send")
rotationPtr = flag.Uint("Rotation", 0, "Rotate video output. (0-359 degrees)")
brightnessPtr = flag.Uint("Brightness", 50, "Set brightness. (0-100) ")
saturationPtr = flag.Int("Saturation", 0, "Set Saturation. (100-100)")
@ -246,7 +244,6 @@ func handleFlags() revid.Config {
cfg.FrameRate = *frameRatePtr
cfg.HTTPAddress = *httpAddressPtr
cfg.Quantization = *quantizationPtr
cfg.IntraRefreshPeriod = *intraRefreshPeriodPtr
cfg.RTPAddress = *rtpAddrPtr
cfg.Brightness = *brightnessPtr
cfg.Saturation = *saturationPtr

View File

@ -40,10 +40,11 @@ import (
const (
byteDepth = 2 // We are working with 16-bit samples. TODO(Trek): make configurable.
initSamps = 2 // Number of samples used to initialise the encoder.
initBytes = initSamps * byteDepth
headBytes = 4 // Number of bytes in the header of ADPCM.
initSize = initSamps * byteDepth
headSize = 8 // Number of bytes in the header of ADPCM.
samplesPerEnc = 2 // Number of sample encoded at a time eg. 2 16-bit samples get encoded into 1 byte.
bytesPerEnc = samplesPerEnc * byteDepth
chunkLenSize = 4 // Size of the chunk length in bytes, chunk length is a 32 bit number.
compFact = 4 // In general ADPCM compresses by a factor of 4.
)
@ -176,7 +177,7 @@ func (e *Encoder) calcHead(sample []byte, pad bool) (int, error) {
// The suitable step size is the closest step size in the stepTable to half the absolute difference of the first two samples.
func (e *Encoder) init(samples []byte) {
int1 := int16(binary.LittleEndian.Uint16(samples[:byteDepth]))
int2 := int16(binary.LittleEndian.Uint16(samples[byteDepth:initBytes]))
int2 := int16(binary.LittleEndian.Uint16(samples[byteDepth:initSize]))
e.est = int1
halfDiff := math.Abs(math.Abs(float64(int1)) - math.Abs(float64(int2))/2)
@ -197,8 +198,8 @@ func (e *Encoder) init(samples []byte) {
func (e *Encoder) Write(b []byte) (int, error) {
// Check that pcm has enough data to initialize Decoder.
pcmLen := len(b)
if pcmLen < initBytes {
return 0, fmt.Errorf("length of given byte array must be >= %v", initBytes)
if pcmLen < initSize {
return 0, fmt.Errorf("length of given byte array must be >= %v", initSize)
}
// Determine if there will be a byte that won't contain two full nibbles and will need padding.
@ -207,8 +208,18 @@ func (e *Encoder) Write(b []byte) (int, error) {
pad = true
}
e.init(b[:initBytes])
n, err := e.calcHead(b[:byteDepth], pad)
// Write the first 4 bytes of the adpcm chunk, which represent its length, ie. the number of bytes following the chunk length.
chunkLen := EncBytes(pcmLen)
chunkLenBytes := make([]byte, chunkLenSize)
binary.LittleEndian.PutUint32(chunkLenBytes, uint32(chunkLen))
n, err := e.dst.Write(chunkLenBytes)
if err != nil {
return n, err
}
e.init(b[:initSize])
_n, err := e.calcHead(b[:byteDepth], pad)
n += _n
if err != nil {
return n, err
}
@ -284,19 +295,30 @@ func (d *Decoder) decodeSample(nibble byte) int16 {
// It writes its output to the Decoder's dst.
// The number of bytes written out is returned along with any error that occured.
func (d *Decoder) Write(b []byte) (int, error) {
// Initialize Decoder with first 4 bytes of b.
d.est = int16(binary.LittleEndian.Uint16(b[:byteDepth]))
d.idx = int16(b[byteDepth])
// Iterate over each chunk and decode it.
var n int
var chunkLen int
for off := 0; off+headSize <= len(b); off += chunkLen {
// Read length of chunk and check if whole chunk exists.
chunkLen = int(binary.LittleEndian.Uint32(b[off : off+chunkLenSize]))
if off+chunkLen > len(b) {
break
}
// Initialize Decoder with header of b.
d.est = int16(binary.LittleEndian.Uint16(b[off+chunkLenSize : off+chunkLenSize+byteDepth]))
d.idx = int16(b[off+chunkLenSize+byteDepth])
d.step = stepTable[d.idx]
n, err := d.dst.Write(b[:byteDepth])
_n, err := d.dst.Write(b[off+chunkLenSize : off+chunkLenSize+byteDepth])
n += _n
if err != nil {
return n, err
}
// For each byte, seperate it into two nibbles (each nibble is a compressed sample),
// then decode each nibble and output the resulting 16-bit samples.
// If padding flag is true (Adpcm[3]), only decode up until the last byte, then decode that separately.
for i := headBytes; i < len(b)-int(b[3]); i++ {
// If padding flag is true only decode up until the last byte, then decode that separately.
for i := off + headSize; i < off+chunkLen-int(b[off+chunkLenSize+3]); i++ {
twoNibs := b[i]
nib2 := byte(twoNibs >> 4)
nib1 := byte((nib2 << 4) ^ twoNibs)
@ -317,8 +339,8 @@ func (d *Decoder) Write(b []byte) (int, error) {
return n, err
}
}
if b[3] == 0x01 {
padNib := b[len(b)-1]
if b[off+chunkLenSize+3] == 0x01 {
padNib := b[off+chunkLen-1]
samp := make([]byte, byteDepth)
binary.LittleEndian.PutUint16(samp, uint16(d.decodeSample(padNib)))
_n, err := d.dst.Write(samp)
@ -327,6 +349,7 @@ func (d *Decoder) Write(b []byte) (int, error) {
return n, err
}
}
}
return n, nil
}
@ -349,7 +372,7 @@ func EncBytes(n int) int {
// and a start index and padding-flag byte are added.
// Also if there are an even number of samples, there will be half a byte of padding added to the last byte.
if n%bytesPerEnc == 0 {
return (n-byteDepth)/compFact + headBytes + 1
return (n-byteDepth)/compFact + headSize + 1
}
return (n-byteDepth)/compFact + headBytes
return (n-byteDepth)/compFact + headSize
}

View File

@ -51,7 +51,7 @@ func TestEncodeBlock(t *testing.T) {
}
// Read expected adpcm file.
exp, err := ioutil.ReadFile("../../../test/test-data/av/output/encoded_8kHz_adpcm_test.adpcm")
exp, err := ioutil.ReadFile("../../../test/test-data/av/output/encoded_8kHz_adpcm_test2.adpcm")
if err != nil {
t.Errorf("Unable to read expected ADPCM file: %v", err)
}
@ -65,7 +65,7 @@ func TestEncodeBlock(t *testing.T) {
// resulting PCM with the expected decoded PCM.
func TestDecodeBlock(t *testing.T) {
// Read adpcm.
comp, err := ioutil.ReadFile("../../../test/test-data/av/input/encoded_8kHz_adpcm_test.adpcm")
comp, err := ioutil.ReadFile("../../../test/test-data/av/input/encoded_8kHz_adpcm_test2.adpcm")
if err != nil {
t.Errorf("Unable to read input ADPCM file: %v", err)
}
@ -79,7 +79,7 @@ func TestDecodeBlock(t *testing.T) {
}
// Read expected pcm file.
exp, err := ioutil.ReadFile("../../../test/test-data/av/output/decoded_8kHz_adpcm_test.pcm")
exp, err := ioutil.ReadFile("../../../test/test-data/av/output/decoded_8kHz_adpcm_test2.pcm")
if err != nil {
t.Errorf("Unable to read expected PCM file: %v", err)
}

View File

@ -28,8 +28,6 @@ LICENSE
package h264dec
import (
"math"
"bitbucket.org/ausocean/av/codec/h264/h264dec/bits"
"github.com/pkg/errors"
)
@ -306,80 +304,6 @@ var (
}
)
// Errors used by mbTypeBinarization.
var (
errBadMbType = errors.New("macroblock type outside of valid range")
errBadMbSliceType = errors.New("bad slice type for macroblock")
)
// mbTypeBinarization returns the macroblock type binarization for the given
// macroblock type value and slice type using the process defined in section
// 9.3.2.5 of the specifications.
func mbTypeBinarization(v, slice int) ([]int, error) {
switch slice {
case sliceTypeI:
if v < minIMbType || v > maxIMbType {
return nil, errBadMbType
}
return binOfIMBTypes[v], nil
case sliceTypeSI:
if v < minSIMbType || v > maxSIMbType {
return nil, errBadMbType
}
if v == sliceTypeSI {
return []int{0}, nil
}
return append([]int{1}, binOfIMBTypes[v-1]...), nil
case sliceTypeP, sliceTypeSP:
if v < minPOrSPMbType || v > maxPOrSPMbType || v == P8x8ref0 {
return nil, errBadMbType
}
if v < 5 {
return binOfPOrSPMBTypes[v], nil
}
return append([]int{1}, binOfIMBTypes[v-5]...), nil
case sliceTypeB:
if v < minBMbType || v > maxBMbType {
return nil, errBadMbType
}
if v < 23 {
return binOfBMBTypes[v], nil
}
return append([]int{1, 1, 1, 1, 0, 1}, binOfIMBTypes[v-23]...), nil
default:
return nil, errBadMbSliceType
}
}
// Error used by subMbTypeBinarization.
var errBadSubMbSliceType = errors.New("bad slice type for sub-macroblock")
// subMbTypeBinarization returns the binarization of a sub-macroblock type
// given the slice in which it is in using the process defined in section
// 9.3.2.5 of the specifications.
func subMbTypeBinarization(v, slice int) ([]int, error) {
switch slice {
case sliceTypeP, sliceTypeSP:
if v < minPOrSPSubMbType || v > maxPOrSPSubMbType {
return nil, errBadMbType
}
return binOfPOrSPSubMBTypes[v], nil
case sliceTypeB:
if v < minBSubMbType || v > maxBSubMbType {
return nil, errBadMbType
}
return binOfBSubMBTypes[v], nil
default:
return nil, errBadSubMbSliceType
}
}
// Table 9-34
type MaxBinIdxCtx struct {
// When false, Prefix is the MaxBinIdxCtx
@ -762,119 +686,3 @@ func CtxIdx(binIdx, maxBinIdxCtx, ctxIdxOffset int) int {
return ctxIdx
}
// Error used by unaryBinarization.
var errNegativeSyntaxVal = errors.New("cannot get unary binarization of negative value")
// unaryBinarization returns the unary binarization of a syntax element having
// value v, as specified by setion 9.3.2.1 in the specifications.
func unaryBinarization(v int) ([]int, error) {
if v < 0 {
return nil, errNegativeSyntaxVal
}
r := make([]int, v+1)
for i := 0; i <= v; i++ {
if i < v {
r[i] = 1
}
}
return r, nil
}
// Error used by truncUnaryBinarization.
var errInvalidSyntaxVal = errors.New("syntax value cannot be greater than cMax")
// truncUnaryBinarization returns the truncated unary binarization of a syntax
// element v given a cMax as specified in section 9.3.2.2 of the specifications.
func truncUnaryBinarization(v, cMax int) ([]int, error) {
if v < 0 {
return nil, errNegativeSyntaxVal
}
if v > cMax {
return nil, errInvalidSyntaxVal
}
if v == cMax {
b, _ := unaryBinarization(v)
return b[:len(b)-1], nil
}
return unaryBinarization(v)
}
// Error used by unaryExpGolombBinarization.
var errInvalidUCoff = errors.New("uCoff cannot be less than or equal to zero")
// unaryExpGolombBinarization returns the concatendated unary/k-th order
// Exp-Golomb (UEGk) binarization of a syntax element using the process defined
// in section 9.3.2.3 of the specifications.
func unaryExpGolombBinarization(v, uCoff, k int, signedValFlag bool) ([]int, error) {
if uCoff <= 0 {
return nil, errInvalidUCoff
}
prefix, err := truncUnaryBinarization(mini(uCoff, absi(v)), uCoff)
if err != nil {
return nil, err
}
return append(prefix, suffix(v, uCoff, k, signedValFlag)...), nil
}
// suffix returns the suffix part of a unary k-th Exp-Golomb Binarization
// using the the algorithm as described by pseudo code 9-6 in section 9.3.2.3.
// TODO: could probably reduce allocations.
func suffix(v, uCoff, k int, signedValFlag bool) []int {
var s []int
if absi(v) >= uCoff {
sufS := absi(v) - uCoff
var stop bool
for {
if sufS >= (1 << uint(k)) {
s = append(s, 1)
sufS = sufS - (1 << uint(k))
k++
} else {
s = append(s, 0)
for k = k - 1; k >= 0; k-- {
s = append(s, (sufS>>uint(k))&1)
}
stop = true
}
if stop {
break
}
}
}
if signedValFlag && v != 0 {
if v > 0 {
s = append(s, 0)
} else {
s = append(s, 1)
}
}
return s
}
// Error used by fixedLenBinariztion.
var errNegativeValue = errors.New("cannot get fixed length binarization of negative value")
// fixedLenBinarization returns the fixed-length (FL) binarization of the syntax
// element v, given cMax to determine bin length, as specified by section 9.3.2.4
// of the specifications.
func fixedLenBinarization(v, cMax int) ([]int, error) {
if v < 0 {
return nil, errNegativeValue
}
l := int(math.Ceil(math.Log2(float64(cMax + 1))))
r := make([]int, l)
for i := l - 1; i >= 0; i-- {
r[i] = v % 2
v = v / 2
}
return r, nil
}

View File

@ -26,74 +26,9 @@ LICENSE
package h264dec
import (
"reflect"
"testing"
)
func TestMbTypeBinarization(t *testing.T) {
tests := []struct {
v, slice int
want []int
err error
}{
{v: 6, slice: sliceTypeI, want: []int{1, 0, 0, 1, 0, 0, 1}},
{v: 26, slice: sliceTypeI, err: errBadMbType},
{v: -1, slice: sliceTypeI, err: errBadMbType},
{v: 4, slice: sliceTypeSI, want: []int{0}},
{v: 6, slice: sliceTypeSI, want: []int{1, 1, 0, 0, 1, 0, 0, 0}},
{v: 0, slice: sliceTypeSI, err: errBadMbType},
{v: 27, slice: sliceTypeSI, err: errBadMbType},
{v: 2, slice: sliceTypeP, want: []int{0, 1, 0}},
{v: 3, slice: sliceTypeSP, want: []int{0, 0, 1}},
{v: 7, slice: sliceTypeP, want: []int{1, 1, 0, 0, 0, 0, 1}},
{v: 7, slice: sliceTypeSP, want: []int{1, 1, 0, 0, 0, 0, 1}},
{v: -1, slice: sliceTypeP, err: errBadMbType},
{v: 31, slice: sliceTypeP, err: errBadMbType},
{v: 8, slice: sliceTypeB, want: []int{1, 1, 0, 1, 0, 1}},
{v: 30, slice: sliceTypeB, want: []int{1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0}},
{v: -1, slice: sliceTypeB, err: errBadMbType},
{v: 49, slice: sliceTypeB, err: errBadMbType},
{v: 6, slice: 20, err: errBadMbSliceType},
}
for i, test := range tests {
got, err := mbTypeBinarization(test.v, test.slice)
if err != test.err {
t.Errorf("did not get expected error for test %d\nGot: %v\nWant: %v", i, err, test.err)
}
if !reflect.DeepEqual(got, test.want) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v", i, got, test.want)
}
}
}
func TestSubMbTypeBinarization(t *testing.T) {
tests := []struct {
v, slice int
want []int
err error
}{
{v: 2, slice: sliceTypeP, want: []int{0, 1, 1}},
{v: 2, slice: sliceTypeSP, want: []int{0, 1, 1}},
{v: -1, slice: sliceTypeSP, err: errBadMbType},
{v: 4, slice: sliceTypeSP, err: errBadMbType},
{v: 9, slice: sliceTypeB, want: []int{1, 1, 1, 0, 1, 0}},
{v: 9, slice: 40, err: errBadSubMbSliceType},
}
for i, test := range tests {
got, err := subMbTypeBinarization(test.v, test.slice)
if err != test.err {
t.Errorf("did not get expected error for test %d\nGot: %v\nWant: %v", i, err, test.err)
}
if !reflect.DeepEqual(got, test.want) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v", i, got, test.want)
}
}
}
var ctxIdxTests = []struct {
binIdx int
maxBinIdxCtx int
@ -211,144 +146,3 @@ func TestCtxIdx(t *testing.T) {
}
}
}
func TestUnaryBinarization(t *testing.T) {
// Test data has been extracted from table 9-35 of the specifications.
tests := []struct {
in int
want []int
err error
}{
{in: 0, want: []int{0}, err: nil},
{in: 1, want: []int{1, 0}, err: nil},
{in: 2, want: []int{1, 1, 0}, err: nil},
{in: 3, want: []int{1, 1, 1, 0}, err: nil},
{in: 4, want: []int{1, 1, 1, 1, 0}, err: nil},
{in: 5, want: []int{1, 1, 1, 1, 1, 0}, err: nil},
{in: -3, want: nil, err: errNegativeSyntaxVal},
}
for i, test := range tests {
got, err := unaryBinarization(test.in)
if err != test.err {
t.Errorf("did not get expected error for test %d\nGot: %v\nWant: %v", i, err, test.err)
}
if !reflect.DeepEqual(test.want, got) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v\n", i, got, test.want)
}
}
}
func TestFixedLengthBinarization(t *testing.T) {
tests := []struct {
v int
cMax int
want []int
err error
}{
{v: 0, cMax: 7, want: []int{0, 0, 0}},
{v: 1, cMax: 7, want: []int{0, 0, 1}},
{v: 2, cMax: 7, want: []int{0, 1, 0}},
{v: 3, cMax: 7, want: []int{0, 1, 1}},
{v: 4, cMax: 7, want: []int{1, 0, 0}},
{v: 5, cMax: 7, want: []int{1, 0, 1}},
{v: 6, cMax: 7, want: []int{1, 1, 0}},
{v: 7, cMax: 7, want: []int{1, 1, 1}},
{v: -1, cMax: 7, want: nil, err: errNegativeValue},
}
for i, test := range tests {
got, err := fixedLenBinarization(test.v, test.cMax)
if err != test.err {
t.Errorf("did not get expected error for test %d\nGot: %v\nWant: %v\n", i, err, test.err)
}
if !reflect.DeepEqual(test.want, got) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v\n", i, got, test.want)
}
}
}
func TestTruncUnaryBinarization(t *testing.T) {
tests := []struct {
v int
cMax int
want []int
err error
}{
{v: 0, cMax: 10, want: []int{0}, err: nil},
{v: 1, cMax: 10, want: []int{1, 0}, err: nil},
{v: 2, cMax: 10, want: []int{1, 1, 0}, err: nil},
{v: 0, cMax: 0, want: []int{}, err: nil},
{v: 4, cMax: 4, want: []int{1, 1, 1, 1}, err: nil},
{v: 1, cMax: 10, want: []int{1, 0}, err: nil},
{v: 2, cMax: 10, want: []int{1, 1, 0}, err: nil},
{v: -3, cMax: 10, want: nil, err: errNegativeSyntaxVal},
{v: 5, cMax: 4, want: nil, err: errInvalidSyntaxVal},
}
for i, test := range tests {
got, err := truncUnaryBinarization(test.v, test.cMax)
if err != test.err {
t.Errorf("did not get expected error for test %d\nGot: %v\nWant: %v", i, err, test.err)
}
if !reflect.DeepEqual(test.want, got) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v\n", i, got, test.want)
}
}
}
func TestUEGkSuffix(t *testing.T) {
// Data from https://patents.google.com/patent/US20070092150
tests := []struct {
v, uCoff, k int
signedValFlag bool
want []int
}{
0: {v: 14, uCoff: 14, want: []int{0}},
1: {v: 15, uCoff: 14, want: []int{1, 0, 0}},
2: {v: 16, uCoff: 14, want: []int{1, 0, 1}},
3: {v: 17, uCoff: 14, want: []int{1, 1, 0, 0, 0}},
4: {v: 18, uCoff: 14, want: []int{1, 1, 0, 0, 1}},
5: {v: 19, uCoff: 14, want: []int{1, 1, 0, 1, 0}},
6: {v: 20, uCoff: 14, want: []int{1, 1, 0, 1, 1}},
7: {v: 21, uCoff: 14, want: []int{1, 1, 1, 0, 0, 0, 0}},
8: {v: 22, uCoff: 14, want: []int{1, 1, 1, 0, 0, 0, 1}},
9: {v: 23, uCoff: 14, want: []int{1, 1, 1, 0, 0, 1, 0}},
10: {v: 24, uCoff: 14, want: []int{1, 1, 1, 0, 0, 1, 1}},
11: {v: 25, uCoff: 14, want: []int{1, 1, 1, 0, 1, 0, 0}},
}
for i, test := range tests {
got := suffix(test.v, test.uCoff, test.k, test.signedValFlag)
if !reflect.DeepEqual(got, test.want) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v\n", i, got, test.want)
}
}
}
func TestUnaryExpGolombBinarization(t *testing.T) {
tests := []struct {
v, uCoff, k int
signedValFlag bool
want []int
}{
0: {v: 7, uCoff: 14, want: []int{1, 1, 1, 1, 1, 1, 1, 0}},
1: {v: 17, uCoff: 14, want: []int{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}},
2: {v: 15, uCoff: 14, signedValFlag: true, want: []int{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}},
3: {v: -15, uCoff: 14, signedValFlag: true, want: []int{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1}},
}
for i, test := range tests {
got, err := unaryExpGolombBinarization(test.v, test.uCoff, test.k, test.signedValFlag)
if err != nil {
t.Errorf("did not expect error %v for test %d", err, i)
}
if !reflect.DeepEqual(got, test.want) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v\n", i, got, test.want)
}
}
}

View File

@ -0,0 +1,243 @@
/*
TODO: this file should really be in a 'h264enc' package.
DESCRIPTION
cabacenc.go provides functionality for CABAC encoding.
AUTHORS
Saxon A. Nelson-Milton <saxon@ausocean.org>
LICENSE
Copyright (C) 2019 the Australian Ocean Lab (AusOcean).
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package h264dec
import (
"errors"
"fmt"
"math"
)
// Error used by unaryBinString.
var errNegativeSyntaxVal = errors.New("cannot get unary binary string of negative value")
// unaryBinString returns the unary binary string of a syntax element having
// value v, as specified by setion 9.3.2.1 in the specifications.
func unaryBinString(v int) ([]int, error) {
if v < 0 {
return nil, errNegativeSyntaxVal
}
r := make([]int, v+1)
for i := 0; i <= v; i++ {
if i < v {
r[i] = 1
}
}
return r, nil
}
// Error used by truncUnaryBinString.
var errInvalidSyntaxVal = errors.New("syntax value cannot be greater than cMax")
// truncUnaryBinString returns the truncated unary binary string of a syntax
// element v given a cMax as specified in section 9.3.2.2 of the specifications.
func truncUnaryBinString(v, cMax int) ([]int, error) {
if v < 0 {
return nil, errNegativeSyntaxVal
}
if v > cMax {
return nil, errInvalidSyntaxVal
}
if v == cMax {
b, _ := unaryBinString(v)
return b[:len(b)-1], nil
}
return unaryBinString(v)
}
// Error used by unaryExpGolombBinString.
var errInvalidUCoff = errors.New("uCoff cannot be less than or equal to zero")
// unaryExpGolombBinString returns the concatendated unary/k-th order
// Exp-Golomb (UEGk) binary string of a syntax element using the process defined
// in section 9.3.2.3 of the specifications.
func unaryExpGolombBinString(v, uCoff, k int, signedValFlag bool) ([]int, error) {
if uCoff <= 0 {
return nil, errInvalidUCoff
}
prefix, err := truncUnaryBinString(mini(uCoff, absi(v)), uCoff)
if err != nil {
return nil, err
}
return append(prefix, suffix(v, uCoff, k, signedValFlag)...), nil
}
// suffix returns the suffix part of a unary k-th Exp-Golomb binar string
// using the the algorithm as described by pseudo code 9-6 in section 9.3.2.3.
// TODO: could probably reduce allocations.
func suffix(v, uCoff, k int, signedValFlag bool) []int {
var s []int
if absi(v) >= uCoff {
sufS := absi(v) - uCoff
var stop bool
for {
if sufS >= (1 << uint(k)) {
s = append(s, 1)
sufS = sufS - (1 << uint(k))
k++
} else {
s = append(s, 0)
for k = k - 1; k >= 0; k-- {
s = append(s, (sufS>>uint(k))&1)
}
stop = true
}
if stop {
break
}
}
}
if signedValFlag && v != 0 {
if v > 0 {
s = append(s, 0)
} else {
s = append(s, 1)
}
}
return s
}
// Error used by fixedLenBinString.
var errNegativeValue = errors.New("cannot get fixed length binary string of negative value")
// fixedLenBinString returns the fixed-length (FL) binary string of the syntax
// element v, given cMax to determine bin length, as specified by section 9.3.2.4
// of the specifications.
func fixedLenBinString(v, cMax int) ([]int, error) {
if v < 0 {
return nil, errNegativeValue
}
l := int(math.Ceil(math.Log2(float64(cMax + 1))))
r := make([]int, l)
for i := l - 1; i >= 0; i-- {
r[i] = v % 2
v = v / 2
}
return r, nil
}
// Errors used by mbTypeBinString.
var (
errBadMbType = errors.New("macroblock type outside of valid range")
errBadMbSliceType = errors.New("bad slice type for macroblock")
)
// mbTypeBinString returns the macroblock type binary string for the given
// macroblock type value and slice type using the process defined in section
// 9.3.2.5 of the specifications.
func mbTypeBinString(v, slice int) ([]int, error) {
switch slice {
case sliceTypeI:
if v < minIMbType || v > maxIMbType {
return nil, errBadMbType
}
return binOfIMBTypes[v], nil
case sliceTypeSI:
if v < minSIMbType || v > maxSIMbType {
return nil, errBadMbType
}
if v == sliceTypeSI {
return []int{0}, nil
}
return append([]int{1}, binOfIMBTypes[v-1]...), nil
case sliceTypeP, sliceTypeSP:
if v < minPOrSPMbType || v > maxPOrSPMbType || v == P8x8ref0 {
return nil, errBadMbType
}
if v < 5 {
return binOfPOrSPMBTypes[v], nil
}
return append([]int{1}, binOfIMBTypes[v-5]...), nil
case sliceTypeB:
if v < minBMbType || v > maxBMbType {
return nil, errBadMbType
}
if v < 23 {
return binOfBMBTypes[v], nil
}
return append([]int{1, 1, 1, 1, 0, 1}, binOfIMBTypes[v-23]...), nil
default:
return nil, errBadMbSliceType
}
}
// Error used by subMbTypeBinString.
var errBadSubMbSliceType = errors.New("bad slice type for sub-macroblock")
// subMbTypeBinString returns the binary string of a sub-macroblock type
// given the slice in which it is in using the process defined in section
// 9.3.2.5 of the specifications.
func subMbTypeBinString(v, slice int) ([]int, error) {
switch slice {
case sliceTypeP, sliceTypeSP:
if v < minPOrSPSubMbType || v > maxPOrSPSubMbType {
return nil, errBadMbType
}
return binOfPOrSPSubMBTypes[v], nil
case sliceTypeB:
if v < minBSubMbType || v > maxBSubMbType {
return nil, errBadMbType
}
return binOfBSubMBTypes[v], nil
default:
return nil, errBadSubMbSliceType
}
}
// codedBlockPatternBinString returns the binarization for the syntax element
// coded_block_pattern as defined by section 9.3.2.6 in specifications.
func codedBlockPatternBinString(luma, chroma, arrayType int) ([]int, error) {
p, err := fixedLenBinString(luma, 15)
if err != nil {
return nil, fmt.Errorf("fixed length binarization failed with error: %v", err)
}
if arrayType == 0 || arrayType == 3 {
return p, nil
}
s, err := truncUnaryBinString(chroma, 2)
if err != nil {
return nil, fmt.Errorf("truncated unary binarization failed with error: %v", err)
}
return append(p, s...), nil
}

View File

@ -0,0 +1,237 @@
/*
TODO: this file should really be in a 'h264enc' package.
DESCRIPTION
cabacenc_test.go provides testing for functionality found in cabacenc.go.
AUTHORS
Saxon A. Nelson-Milton <saxon@ausocean.org>
LICENSE
Copyright (C) 2019 the Australian Ocean Lab (AusOcean).
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package h264dec
import (
"reflect"
"testing"
)
func TestMbTypeBinString(t *testing.T) {
tests := []struct {
v, slice int
want []int
err error
}{
{v: 6, slice: sliceTypeI, want: []int{1, 0, 0, 1, 0, 0, 1}},
{v: 26, slice: sliceTypeI, err: errBadMbType},
{v: -1, slice: sliceTypeI, err: errBadMbType},
{v: 4, slice: sliceTypeSI, want: []int{0}},
{v: 6, slice: sliceTypeSI, want: []int{1, 1, 0, 0, 1, 0, 0, 0}},
{v: 0, slice: sliceTypeSI, err: errBadMbType},
{v: 27, slice: sliceTypeSI, err: errBadMbType},
{v: 2, slice: sliceTypeP, want: []int{0, 1, 0}},
{v: 3, slice: sliceTypeSP, want: []int{0, 0, 1}},
{v: 7, slice: sliceTypeP, want: []int{1, 1, 0, 0, 0, 0, 1}},
{v: 7, slice: sliceTypeSP, want: []int{1, 1, 0, 0, 0, 0, 1}},
{v: -1, slice: sliceTypeP, err: errBadMbType},
{v: 31, slice: sliceTypeP, err: errBadMbType},
{v: 8, slice: sliceTypeB, want: []int{1, 1, 0, 1, 0, 1}},
{v: 30, slice: sliceTypeB, want: []int{1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0}},
{v: -1, slice: sliceTypeB, err: errBadMbType},
{v: 49, slice: sliceTypeB, err: errBadMbType},
{v: 6, slice: 20, err: errBadMbSliceType},
}
for i, test := range tests {
got, err := mbTypeBinString(test.v, test.slice)
if err != test.err {
t.Errorf("did not get expected error for test %d\nGot: %v\nWant: %v", i, err, test.err)
}
if !reflect.DeepEqual(got, test.want) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v", i, got, test.want)
}
}
}
func TestSubMbTypeBinString(t *testing.T) {
tests := []struct {
v, slice int
want []int
err error
}{
{v: 2, slice: sliceTypeP, want: []int{0, 1, 1}},
{v: 2, slice: sliceTypeSP, want: []int{0, 1, 1}},
{v: -1, slice: sliceTypeSP, err: errBadMbType},
{v: 4, slice: sliceTypeSP, err: errBadMbType},
{v: 9, slice: sliceTypeB, want: []int{1, 1, 1, 0, 1, 0}},
{v: 9, slice: 40, err: errBadSubMbSliceType},
}
for i, test := range tests {
got, err := subMbTypeBinString(test.v, test.slice)
if err != test.err {
t.Errorf("did not get expected error for test %d\nGot: %v\nWant: %v", i, err, test.err)
}
if !reflect.DeepEqual(got, test.want) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v", i, got, test.want)
}
}
}
func TestUnaryBinString(t *testing.T) {
// Test data has been extracted from table 9-35 of the specifications.
tests := []struct {
in int
want []int
err error
}{
{in: 0, want: []int{0}, err: nil},
{in: 1, want: []int{1, 0}, err: nil},
{in: 2, want: []int{1, 1, 0}, err: nil},
{in: 3, want: []int{1, 1, 1, 0}, err: nil},
{in: 4, want: []int{1, 1, 1, 1, 0}, err: nil},
{in: 5, want: []int{1, 1, 1, 1, 1, 0}, err: nil},
{in: -3, want: nil, err: errNegativeSyntaxVal},
}
for i, test := range tests {
got, err := unaryBinString(test.in)
if err != test.err {
t.Errorf("did not get expected error for test %d\nGot: %v\nWant: %v", i, err, test.err)
}
if !reflect.DeepEqual(test.want, got) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v\n", i, got, test.want)
}
}
}
func TestFixedLengthBinString(t *testing.T) {
tests := []struct {
v int
cMax int
want []int
err error
}{
{v: 0, cMax: 7, want: []int{0, 0, 0}},
{v: 1, cMax: 7, want: []int{0, 0, 1}},
{v: 2, cMax: 7, want: []int{0, 1, 0}},
{v: 3, cMax: 7, want: []int{0, 1, 1}},
{v: 4, cMax: 7, want: []int{1, 0, 0}},
{v: 5, cMax: 7, want: []int{1, 0, 1}},
{v: 6, cMax: 7, want: []int{1, 1, 0}},
{v: 7, cMax: 7, want: []int{1, 1, 1}},
{v: -1, cMax: 7, want: nil, err: errNegativeValue},
}
for i, test := range tests {
got, err := fixedLenBinString(test.v, test.cMax)
if err != test.err {
t.Errorf("did not get expected error for test %d\nGot: %v\nWant: %v\n", i, err, test.err)
}
if !reflect.DeepEqual(test.want, got) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v\n", i, got, test.want)
}
}
}
func TestTruncUnaryBinString(t *testing.T) {
tests := []struct {
v int
cMax int
want []int
err error
}{
{v: 0, cMax: 10, want: []int{0}, err: nil},
{v: 1, cMax: 10, want: []int{1, 0}, err: nil},
{v: 2, cMax: 10, want: []int{1, 1, 0}, err: nil},
{v: 0, cMax: 0, want: []int{}, err: nil},
{v: 4, cMax: 4, want: []int{1, 1, 1, 1}, err: nil},
{v: 1, cMax: 10, want: []int{1, 0}, err: nil},
{v: 2, cMax: 10, want: []int{1, 1, 0}, err: nil},
{v: -3, cMax: 10, want: nil, err: errNegativeSyntaxVal},
{v: 5, cMax: 4, want: nil, err: errInvalidSyntaxVal},
}
for i, test := range tests {
got, err := truncUnaryBinString(test.v, test.cMax)
if err != test.err {
t.Errorf("did not get expected error for test %d\nGot: %v\nWant: %v", i, err, test.err)
}
if !reflect.DeepEqual(test.want, got) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v\n", i, got, test.want)
}
}
}
func TestUEGkSuffix(t *testing.T) {
// Data from https://patents.google.com/patent/US20070092150
tests := []struct {
v, uCoff, k int
signedValFlag bool
want []int
}{
0: {v: 14, uCoff: 14, want: []int{0}},
1: {v: 15, uCoff: 14, want: []int{1, 0, 0}},
2: {v: 16, uCoff: 14, want: []int{1, 0, 1}},
3: {v: 17, uCoff: 14, want: []int{1, 1, 0, 0, 0}},
4: {v: 18, uCoff: 14, want: []int{1, 1, 0, 0, 1}},
5: {v: 19, uCoff: 14, want: []int{1, 1, 0, 1, 0}},
6: {v: 20, uCoff: 14, want: []int{1, 1, 0, 1, 1}},
7: {v: 21, uCoff: 14, want: []int{1, 1, 1, 0, 0, 0, 0}},
8: {v: 22, uCoff: 14, want: []int{1, 1, 1, 0, 0, 0, 1}},
9: {v: 23, uCoff: 14, want: []int{1, 1, 1, 0, 0, 1, 0}},
10: {v: 24, uCoff: 14, want: []int{1, 1, 1, 0, 0, 1, 1}},
11: {v: 25, uCoff: 14, want: []int{1, 1, 1, 0, 1, 0, 0}},
}
for i, test := range tests {
got := suffix(test.v, test.uCoff, test.k, test.signedValFlag)
if !reflect.DeepEqual(got, test.want) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v\n", i, got, test.want)
}
}
}
func TestUnaryExpGolombBinString(t *testing.T) {
tests := []struct {
v, uCoff, k int
signedValFlag bool
want []int
}{
0: {v: 7, uCoff: 14, want: []int{1, 1, 1, 1, 1, 1, 1, 0}},
1: {v: 17, uCoff: 14, want: []int{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}},
2: {v: 15, uCoff: 14, signedValFlag: true, want: []int{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}},
3: {v: -15, uCoff: 14, signedValFlag: true, want: []int{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1}},
}
for i, test := range tests {
got, err := unaryExpGolombBinString(test.v, test.uCoff, test.k, test.signedValFlag)
if err != nil {
t.Errorf("did not expect error %v for test %d", err, i)
}
if !reflect.DeepEqual(got, test.want) {
t.Errorf("did not get expected result for test %d\nGot: %v\nWant: %v\n", i, got, test.want)
}
}
}

View File

@ -0,0 +1,46 @@
/*
DESCRIPTION
cavlc.go provides utilities for context-adaptive variable-length coding
for the parsing of H.264 syntax structure fields.
AUTHORS
Saxon A. Nelson-Milton <saxon@ausocean.org>
LICENSE
Copyright (C) 2019 the Australian Ocean Lab (AusOcean).
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package h264dec
import (
"fmt"
"bitbucket.org/ausocean/av/codec/h264/h264dec/bits"
)
// parseLevelPrefix parses the level_prefix variable as specified by the process
// outlined in section 9.2.2.1 in the specifications.
func parseLevelPrefix(br *bits.BitReader) (int, error) {
zeros := -1
for b := 0; b != 1; zeros++ {
_b, err := br.ReadBits(1)
if err != nil {
return -1, fmt.Errorf("could not read bit, failed with error: %v", err)
}
b = int(_b)
}
return zeros, nil
}

View File

@ -0,0 +1,55 @@
/*
DESCRIPTION
cavlc_test.go provides testing for functionality in cavlc.go.
AUTHORS
Saxon A. Nelson-Milton <saxon@ausocean.org>
LICENSE
Copyright (C) 2019 the Australian Ocean Lab (AusOcean).
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package h264dec
import (
"bytes"
"testing"
"bitbucket.org/ausocean/av/codec/h264/h264dec/bits"
)
func TestParseLevelPrefix(t *testing.T) {
tests := []struct {
in string
want int
}{
{in: "00001", want: 4},
{in: "0000001", want: 6},
{in: "1", want: 0},
}
for i, test := range tests {
s, _ := binToSlice(test.in)
l, err := parseLevelPrefix(bits.NewBitReader(bytes.NewReader(s)))
if err != nil {
t.Errorf("did not expect error: %v, for test %d", err, i)
}
if l != test.want {
t.Errorf("did not get expected result for test %d\nGot: %d\nWant: %d\n", i, l, test.want)
}
}
}

View File

@ -9,7 +9,7 @@ const (
naluTypeSlicePartC
naluTypeSliceIDRPicture
naluTypeSEI
naluTypeSPS
NALTypeSPS
naluTypePPS
naluTypeAccessUnitDelimiter
naluTypeEndOfSequence

View File

@ -61,7 +61,7 @@ func (h *H264Reader) Start() {
// TODO: need to handle error from this.
nalUnit, _, _ := h.readNalUnit()
switch nalUnit.Type {
case naluTypeSPS:
case NALTypeSPS:
// TODO: handle this error
sps, _ := NewSPS(nalUnit.RBSP, false)
h.VideoStreams = append(

71
codec/h264/parse.go Normal file
View File

@ -0,0 +1,71 @@
/*
DESCRIPTION
parse.go provides H.264 NAL unit parsing utilities for the extraction of
syntax elements.
AUTHORS
Saxon A. Nelson-Milton <saxon@ausocean.org>
Dan Kortschak <dan@ausocean.org>
LICENSE
Copyright (C) 2017-2018 the Australian Ocean Lab (AusOcean).
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package h264
import "errors"
var errNotEnoughBytes = errors.New("not enough bytes to read")
// NALType returns the NAL type of the given NAL unit bytes. The given NAL unit
// may be in byte stream or packet format.
func NALType(n []byte) (int, error) {
sc := frameScanner{buf: n}
b, ok := sc.readByte()
if !ok {
return 0, errNotEnoughBytes
}
for i := 1; b == 0x00 && i != 4; i++ {
b, ok = sc.readByte()
if !ok {
return 0, errNotEnoughBytes
}
if b != 0x01 || (i != 2 && i != 3) {
continue
}
b, ok = sc.readByte()
if !ok {
return 0, errNotEnoughBytes
}
return int(b & 0x1f), nil
}
return int(b & 0x1f), nil
}
type frameScanner struct {
off int
buf []byte
}
func (s *frameScanner) readByte() (b byte, ok bool) {
if s.off >= len(s.buf) {
return 0, false
}
b = s.buf[s.off]
s.off++
return b, true
}

View File

@ -26,14 +26,53 @@ LICENSE
package mts
import (
"fmt"
"io"
"strconv"
"time"
"bitbucket.org/ausocean/av/codec/h264"
"bitbucket.org/ausocean/av/codec/h264/h264dec"
"bitbucket.org/ausocean/av/container/mts/meta"
"bitbucket.org/ausocean/av/container/mts/pes"
"bitbucket.org/ausocean/av/container/mts/psi"
"bitbucket.org/ausocean/utils/realtime"
)
// Media type values.
// TODO: reference relevant specifications.
const (
H264ID = 27
H265ID = 36
audioStreamID = 0xc0 // First audio stream ID.
)
// Constants used to communicate which media codec will be packetized.
const (
EncodeH264 = iota
EncodeH265
EncodeAudio
)
// Time-related constants.
const (
// ptsOffset is the offset added to the clock to determine
// the current presentation timestamp.
ptsOffset = 700 * time.Millisecond
// PCRFrequency is the base Program Clock Reference frequency in Hz.
PCRFrequency = 90000
// PTSFrequency is the presentation timestamp frequency in Hz.
PTSFrequency = 90000
// MaxPTS is the largest PTS value (i.e., for a 33-bit unsigned integer).
MaxPTS = (1 << 33) - 1
)
// If we are not using NAL based PSI intervals then we will send PSI every 7 packets.
const psiSendCount = 7
// Some common manifestations of PSI.
var (
// StandardPAT is a minimal PAT.
@ -72,51 +111,20 @@ var (
}
)
const (
psiInterval = 1 * time.Second
psiSendCount = 7
)
// Meta allows addition of metadata to encoded mts from outside of this pkg.
// See meta pkg for usage.
//
// TODO: make this not global.
var Meta *meta.Data
// This will help us obtain a realtime for timestamp meta encoding.
var RealTime = realtime.NewRealTime()
var (
patTable = StandardPAT.Bytes()
pmtTable []byte
)
const (
H264ID = 27
H265ID = 36
audioStreamID = 0xc0 // First audio stream ID.
)
// Constants used to communicate which media codec will be packetized.
const (
EncodeH264 = iota
EncodeH265
EncodeAudio
)
// Time-related constants.
const (
// ptsOffset is the offset added to the clock to determine
// the current presentation timestamp.
ptsOffset = 700 * time.Millisecond
// PCRFrequency is the base Program Clock Reference frequency in Hz.
PCRFrequency = 90000
// PTSFrequency is the presentation timestamp frequency in Hz.
PTSFrequency = 90000
// MaxPTS is the largest PTS value (i.e., for a 33-bit unsigned integer).
MaxPTS = (1 << 33) - 1
)
// Encoder encapsulates properties of an MPEG-TS generator.
type Encoder struct {
dst io.WriteCloser
@ -130,13 +138,11 @@ type Encoder struct {
continuity map[int]byte
timeBasedPsi bool
nalBasedPSI bool
pktCount int
psiSendCount int
mediaPid int
streamID byte
psiLastTime time.Time
}
// NewEncoder returns an Encoder with the specified media type and rate eg. if a video stream
@ -174,7 +180,7 @@ func NewEncoder(dst io.WriteCloser, rate float64, mediaType int) *Encoder {
writePeriod: time.Duration(float64(time.Second) / rate),
ptsOffset: ptsOffset,
timeBasedPsi: true,
nalBasedPSI: true,
pktCount: 8,
@ -199,12 +205,8 @@ const (
hasPTS = 0x2
)
// TimeBasedPsi allows for the setting of the PSI writing method, therefore, if
// PSI is written based on some time duration, or based on a packet count.
// If b is true, then time based PSI is used, otherwise the PSI is written
// every sendCount.
func (e *Encoder) TimeBasedPsi(b bool, sendCount int) {
e.timeBasedPsi = b
func (e *Encoder) NALBasedPSI(b bool, sendCount int) {
e.nalBasedPSI = b
e.psiSendCount = sendCount
e.pktCount = e.psiSendCount
}
@ -212,14 +214,24 @@ func (e *Encoder) TimeBasedPsi(b bool, sendCount int) {
// Write implements io.Writer. Write takes raw video or audio data and encodes into MPEG-TS,
// then sending it to the encoder's io.Writer destination.
func (e *Encoder) Write(data []byte) (int, error) {
now := time.Now()
if (e.timeBasedPsi && (now.Sub(e.psiLastTime) > psiInterval)) || (!e.timeBasedPsi && (e.pktCount >= e.psiSendCount)) {
if e.nalBasedPSI {
nalType, err := h264.NALType(data)
if err != nil {
return 0, fmt.Errorf("could not get type from NAL unit, failed with error: %v", err)
}
if nalType == h264dec.NALTypeSPS {
err := e.writePSI()
if err != nil {
return 0, err
}
}
} else if e.pktCount >= e.psiSendCount {
e.pktCount = 0
err := e.writePSI()
if err != nil {
return 0, err
}
e.psiLastTime = now
}
// Prepare PES data.
@ -328,6 +340,9 @@ func (e *Encoder) ccFor(pid int) byte {
// contained in the global Meta struct.
func updateMeta(b []byte) ([]byte, error) {
p := psi.PSIBytes(b)
if RealTime.IsSet() {
Meta.Add("ts", strconv.Itoa(int(RealTime.Get().Unix())))
}
err := p.AddDescriptor(psi.MetadataTag, Meta.Encode())
return []byte(p), err
}

View File

@ -650,8 +650,11 @@ func SegmentForMeta(d []byte, key, val string) ([][]byte, error) {
}
// pid returns the packet identifier for the given packet.
func pid(p []byte) uint16 {
return uint16(p[1]&0x1f)<<8 | uint16(p[2])
func PID(p []byte) (uint16, error) {
if len(p) < PacketSize {
return 0, errors.New("packet length less than 188")
}
return uint16(p[1]&0x1f)<<8 | uint16(p[2]), nil
}
// Programs returns a map of program numbers and corresponding PMT PIDs for a
@ -683,10 +686,14 @@ func Streams(p []byte) ([]gotspsi.PmtElementaryStream, error) {
// but this program may contain different streams, i.e. a video stream + audio
// stream.
func MediaStreams(p []byte) ([]gotspsi.PmtElementaryStream, error) {
if len(p) < 2*PacketSize {
return nil, errors.New("PSI is not two packets or more long")
}
pat := p[:PacketSize]
pmt := p[PacketSize : 2*PacketSize]
if pid(pat) != PatPid {
pid, _ := PID(pat)
if pid != PatPid {
return nil, errors.New("first packet is not a PAT")
}
@ -703,7 +710,8 @@ func MediaStreams(p []byte) ([]gotspsi.PmtElementaryStream, error) {
return nil, ErrMultiplePrograms
}
if pid(pmt) != pmtPIDs(m)[0] {
pid, _ = PID(pmt)
if pid != pmtPIDs(m)[0] {
return nil, errors.New("second packet is not desired PMT")
}

View File

@ -27,6 +27,7 @@ package revid
import (
"errors"
"time"
"bitbucket.org/ausocean/av/codec/codecutil"
"bitbucket.org/ausocean/utils/logger"
@ -108,7 +109,8 @@ const (
defaultRotation = 0 // Degrees
defaultWidth = 1280
defaultHeight = 720
defaultIntraRefreshPeriod = 100
defaultMinFrames = 100
defaultClipDuration = 0
defaultQuantization = 30
defaultBitrate = 400000
@ -202,9 +204,16 @@ type Config struct {
// are using Raspivid input.
Quantization uint
// IntraRefreshPeriod defines the frequency of video parameter NAL units for
// Raspivid input.
IntraRefreshPeriod uint
// MinFrames defines the frequency of key NAL units SPS, PPS and IDR in
// number of NAL units. This will also determine the frequency of PSI if the
// output container is MPEG-TS. If ClipDuration is less than MinFrames,
// ClipDuration will default to MinFrames.
MinFrames uint
// ClipDuration is the duration of MTS data that is sent using HTTP or RTP
// output. This defaults to 0, therefore MinFrames will determine the length of
// clips by default.
ClipDuration time.Duration
// Logger holds an implementation of the Logger interface as defined in revid.go.
// This must be set for revid to work correctly.
@ -383,9 +392,18 @@ func (c *Config) Validate() error {
return errors.New("invalid bitrate")
}
if c.IntraRefreshPeriod == 0 {
c.Logger.Log(logger.Info, pkg+"no intra refresh defined, defaulting", "intraRefresh", defaultIntraRefreshPeriod)
c.IntraRefreshPeriod = defaultIntraRefreshPeriod
if c.MinFrames == 0 {
c.Logger.Log(logger.Info, pkg+"no min period defined, defaulting", "MinFrames", defaultMinFrames)
c.MinFrames = defaultMinFrames
} else if c.MinFrames < 0 {
return errors.New("refresh period is less than 0")
}
if c.ClipDuration == 0 {
c.Logger.Log(logger.Info, pkg+"no clip duration defined, defaulting", "ClipDuration", defaultClipDuration)
c.ClipDuration = defaultClipDuration
} else if c.ClipDuration < 0 {
return errors.New("clip duration is less than 0")
}
if c.Quantization != 0 && (c.Quantization < 10 || c.Quantization > 40) {

View File

@ -51,6 +51,7 @@ import (
"bitbucket.org/ausocean/iot/pi/netsender"
"bitbucket.org/ausocean/utils/ioext"
"bitbucket.org/ausocean/utils/logger"
"bitbucket.org/ausocean/utils/ring"
)
// RTMP connection properties.
@ -230,9 +231,8 @@ func (r *Revid) setupPipeline(mtsEnc func(dst io.WriteCloser, rate float64) (io.
w = newMtsSender(
newHttpSender(r.ns, r.config.Logger.Log),
r.config.Logger.Log,
r.config.MTSRBSize,
r.config.MTSRBElementSize,
0,
ring.NewBuffer(r.config.MTSRBSize, r.config.MTSRBElementSize, 0),
r.config.ClipDuration,
)
mtsSenders = append(mtsSenders, w)
case RTP:
@ -456,13 +456,21 @@ func (r *Revid) Update(vars map[string]string) error {
break
}
r.config.Quantization = uint(v)
case "IntraRefreshPeriod":
p, err := strconv.ParseUint(value, 10, 0)
case "MinFrames":
v, err := strconv.Atoi(value)
if err != nil {
r.config.Logger.Log(logger.Warning, pkg+"invalid intrarefreshperiod param", "value", value)
r.config.Logger.Log(logger.Warning, pkg+"invalid MinFrames param", "value", value)
break
}
r.config.IntraRefreshPeriod = uint(p)
r.config.MinFrames = uint(v)
case "ClipDuration":
v, err := strconv.Atoi(value)
if err != nil {
r.config.Logger.Log(logger.Warning, pkg+"invalid ClipDuration param", "value", value)
break
}
r.config.ClipDuration = time.Duration(v) * time.Second
case "HorizontalFlip":
switch strings.ToLower(value) {
@ -577,7 +585,7 @@ func (r *Revid) startRaspivid() (func() error, error) {
args = append(args,
"--codec", "H264",
"--inline",
"--intra", fmt.Sprint(r.config.IntraRefreshPeriod),
"--intra", fmt.Sprint(r.config.MinFrames),
)
if r.config.Quantization != 0 {
args = append(args, "-qp", fmt.Sprint(r.config.Quantization))

View File

@ -29,11 +29,11 @@ LICENSE
package revid
import (
"errors"
"fmt"
"io"
"net"
"os"
"strconv"
"sync"
"time"
@ -118,7 +118,7 @@ func extractMeta(r string, log func(lvl int8, msg string, args ...interface{}))
log(logger.Warning, pkg+"No timestamp in reply")
} else {
log(logger.Debug, fmt.Sprintf("%v got timestamp: %v", pkg, t))
mts.Meta.Add("ts", strconv.Itoa(t))
mts.RealTime.Set(time.Unix(int64(t), 0))
}
// Extract location from reply
@ -156,8 +156,8 @@ func (s *fileSender) Close() error { return s.file.Close() }
// mtsSender implements io.WriteCloser and provides sending capability specifically
// for use with MPEGTS packetization. It handles the construction of appropriately
// lengthed clips based on PSI. It also accounts for discontinuities by
// setting the discontinuity indicator for the first packet of a clip.
// lengthed clips based on clip duration and PSI. It also accounts for
// discontinuities by setting the discontinuity indicator for the first packet of a clip.
type mtsSender struct {
dst io.WriteCloser
buf []byte
@ -166,19 +166,22 @@ type mtsSender struct {
pkt packet.Packet
repairer *mts.DiscontinuityRepairer
curPid int
clipDur time.Duration
prev time.Time
done chan struct{}
log func(lvl int8, msg string, args ...interface{})
wg sync.WaitGroup
}
// newMtsSender returns a new mtsSender.
func newMtsSender(dst io.WriteCloser, log func(lvl int8, msg string, args ...interface{}), ringSize int, ringElementSize int, wTimeout time.Duration) *mtsSender {
func newMtsSender(dst io.WriteCloser, log func(lvl int8, msg string, args ...interface{}), rb *ring.Buffer, clipDur time.Duration) *mtsSender {
s := &mtsSender{
dst: dst,
repairer: mts.NewDiscontinuityRepairer(),
log: log,
ring: ring.NewBuffer(ringSize, ringElementSize, wTimeout),
ring: rb,
done: make(chan struct{}),
clipDur: clipDur,
}
s.wg.Add(1)
go s.output()
@ -229,15 +232,20 @@ func (s *mtsSender) output() {
// Write implements io.Writer.
func (s *mtsSender) Write(d []byte) (int, error) {
if len(d) < mts.PacketSize {
return 0, errors.New("do not have full MTS packet")
}
if s.next != nil {
s.buf = append(s.buf, s.next...)
}
bytes := make([]byte, len(d))
copy(bytes, d)
s.next = bytes
copy(s.pkt[:], bytes)
s.curPid = s.pkt.PID()
if s.curPid == mts.PatPid && len(s.buf) > 0 {
p, _ := mts.PID(bytes)
s.curPid = int(p)
if time.Now().Sub(s.prev) >= s.clipDur && s.curPid == mts.PatPid && len(s.buf) > 0 {
s.prev = time.Now()
_, err := s.ring.Write(s.buf)
if err != nil {
s.log(logger.Warning, pkg+"mtsSender: ringBuffer write error", "error", err.Error())

View File

@ -39,6 +39,7 @@ import (
"bitbucket.org/ausocean/av/container/mts"
"bitbucket.org/ausocean/av/container/mts/meta"
"bitbucket.org/ausocean/utils/logger"
"bitbucket.org/ausocean/utils/ring"
)
var (
@ -133,12 +134,12 @@ func TestMtsSenderSegment(t *testing.T) {
// Create ringBuffer, sender, sender and the MPEGTS encoder.
const numberOfClips = 11
dst := &destination{t: t, done: make(chan struct{}), doneAt: numberOfClips}
sender := newMtsSender(dst, (*dummyLogger)(t).log, defaultMTSRBSize, defaultMTSRBElementSize, 0)
sender := newMtsSender(dst, (*dummyLogger)(t).log, ring.NewBuffer(defaultMTSRBSize, defaultMTSRBElementSize, 0), 0)
encoder := mts.NewEncoder(sender, 25, mts.EncodeH264)
// Turn time based PSI writing off for encoder.
const psiSendCount = 10
encoder.TimeBasedPsi(false, psiSendCount)
encoder.NALBasedPSI(false, psiSendCount)
// Write the packets to the encoder, which will in turn write to the mtsSender.
// Payload will just be packet number.
@ -211,12 +212,12 @@ func TestMtsSenderFailedSend(t *testing.T) {
// Create destination, the mtsSender and the mtsEncoder
const clipToFailAt = 3
dst := &destination{t: t, testFails: true, failAt: clipToFailAt, done: make(chan struct{})}
sender := newMtsSender(dst, (*dummyLogger)(t).log, defaultMTSRBSize, defaultMTSRBElementSize, 0)
sender := newMtsSender(dst, (*dummyLogger)(t).log, ring.NewBuffer(defaultMTSRBSize, defaultMTSRBElementSize, 0), 0)
encoder := mts.NewEncoder(sender, 25, mts.EncodeH264)
// Turn time based PSI writing off for encoder and send PSI every 10 packets.
const psiSendCount = 10
encoder.TimeBasedPsi(false, psiSendCount)
encoder.NALBasedPSI(false, psiSendCount)
// Write the packets to the encoder, which will in turn write to the mtsSender.
// Payload will just be packet number.
@ -291,12 +292,12 @@ func TestMtsSenderDiscontinuity(t *testing.T) {
// Create destination, the mtsSender and the mtsEncoder.
const clipToDelay = 3
dst := &destination{t: t, sendDelay: 10 * time.Millisecond, delayAt: clipToDelay, done: make(chan struct{})}
sender := newMtsSender(dst, (*dummyLogger)(t).log, 1, defaultMTSRBElementSize, 0)
sender := newMtsSender(dst, (*dummyLogger)(t).log, ring.NewBuffer(1, defaultMTSRBElementSize, 0), 0)
encoder := mts.NewEncoder(sender, 25, mts.EncodeH264)
// Turn time based PSI writing off for encoder.
const psiSendCount = 10
encoder.TimeBasedPsi(false, psiSendCount)
encoder.NALBasedPSI(false, psiSendCount)
// Write the packets to the encoder, which will in turn write to the mtsSender.
// Payload will just be packet number.