audio and revid: changes for pr

added license to lex.go
changed pcm functions to return alsa.Buffers
style, syntax and clarification added to audio.go
new method of finding buffersize in audio.go uses a new function called nearestPowerOfTwo
This commit is contained in:
Trek H 2019-06-13 23:35:52 +09:30
parent d23f40c85d
commit 9fe09255be
6 changed files with 173 additions and 65 deletions

View File

@ -1,3 +1,27 @@
/*
NAME
lex.go
AUTHOR
Trek Hopton <trek@ausocean.org>
LICENSE
This file is Copyright (C) 2019 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License in gpl.txt.
If not, see [GNU licenses](http://www.gnu.org/licenses).
*/
package codecutil
import (

View File

@ -35,20 +35,21 @@ import (
"github.com/yobert/alsa"
)
// Resample takes an alsa.Buffer (b) and resamples the pcm audio data to 'rate' Hz and returns the resulting pcm.
// If an error occurs, an error will be returned along with the original b's data.
// Resample takes alsa.Buffer b and resamples the pcm audio data to 'rate' Hz and returns an alsa.Buffer with the resampled data.
// Notes:
// - Currently only downsampling is implemented and b's rate must be divisible by 'rate' or an error will occur.
// - If the number of bytes in b.Data is not divisible by the decimation factor (ratioFrom), the remaining bytes will
// not be included in the result. Eg. input of length 480002 downsampling 6:1 will result in output length 80000.
func Resample(b alsa.Buffer, rate int) ([]byte, error) {
fromRate := b.Format.Rate
if fromRate == rate {
return b.Data, nil
} else if fromRate < 0 {
return nil, fmt.Errorf("Unable to convert from: %v Hz", fromRate)
} else if rate < 0 {
return nil, fmt.Errorf("Unable to convert to: %v Hz", rate)
func Resample(b alsa.Buffer, rate int) (alsa.Buffer, error) {
var newBuf alsa.Buffer
if b.Format.Rate == rate {
return newBuf, nil
}
if b.Format.Rate < 0 {
return newBuf, fmt.Errorf("Unable to convert from: %v Hz", b.Format.Rate)
}
if rate < 0 {
return newBuf, fmt.Errorf("Unable to convert to: %v Hz", rate)
}
// The number of bytes in a sample.
@ -59,22 +60,22 @@ func Resample(b alsa.Buffer, rate int) ([]byte, error) {
case alsa.S16_LE:
sampleLen = 2 * b.Format.Channels
default:
return nil, fmt.Errorf("Unhandled ALSA format: %v", b.Format.SampleFormat)
return newBuf, fmt.Errorf("Unhandled ALSA format: %v", b.Format.SampleFormat)
}
inPcmLen := len(b.Data)
// Calculate sample rate ratio ratioFrom:ratioTo.
rateGcd := gcd(rate, fromRate)
ratioFrom := fromRate / rateGcd
rateGcd := gcd(rate, b.Format.Rate)
ratioFrom := b.Format.Rate / rateGcd
ratioTo := rate / rateGcd
// ratioTo = 1 is the only number that will result in an even sampling.
if ratioTo != 1 {
return nil, fmt.Errorf("unhandled from:to rate ratio %v:%v: 'to' must be 1", ratioFrom, ratioTo)
return newBuf, fmt.Errorf("unhandled from:to rate ratio %v:%v: 'to' must be 1", ratioFrom, ratioTo)
}
newLen := inPcmLen / ratioFrom
result := make([]byte, 0, newLen)
resampled := make([]byte, 0, newLen)
// For each new sample to be generated, loop through the respective 'ratioFrom' samples in 'b.Data' to add them
// up and average them. The result is the new sample.
@ -96,19 +97,31 @@ func Resample(b alsa.Buffer, rate int) ([]byte, error) {
case alsa.S16_LE:
binary.LittleEndian.PutUint16(bAvg, uint16(avg))
}
result = append(result, bAvg...)
resampled = append(resampled, bAvg...)
}
return result, nil
// Create new alsa.Buffer with resampled data.
newBuf = alsa.Buffer{
Format: alsa.BufferFormat{
Channels: b.Format.Channels,
SampleFormat: b.Format.SampleFormat,
Rate: rate,
},
Data: resampled,
}
return newBuf, nil
}
// StereoToMono returns raw mono audio data generated from only the left channel from
// the given stereo recording (ALSA buffer)
// if an error occurs, an error will be returned along with the original stereo data.
func StereoToMono(b alsa.Buffer) ([]byte, error) {
func StereoToMono(b alsa.Buffer) (alsa.Buffer, error) {
var newBuf alsa.Buffer
if b.Format.Channels == 1 {
return b.Data, nil
} else if b.Format.Channels != 2 {
return nil, fmt.Errorf("Audio is not stereo or mono, it has %v channels", b.Format.Channels)
return b, nil
}
if b.Format.Channels != 2 {
return newBuf, fmt.Errorf("Audio is not stereo or mono, it has %v channels", b.Format.Channels)
}
var stereoSampleBytes int
@ -118,7 +131,7 @@ func StereoToMono(b alsa.Buffer) ([]byte, error) {
case alsa.S16_LE:
stereoSampleBytes = 4
default:
return nil, fmt.Errorf("Unhandled ALSA format %v", b.Format.SampleFormat)
return newBuf, fmt.Errorf("Unhandled ALSA format %v", b.Format.SampleFormat)
}
recLength := len(b.Data)
@ -134,7 +147,17 @@ func StereoToMono(b alsa.Buffer) ([]byte, error) {
}
}
return mono, nil
// Create new alsa.Buffer with resampled data.
newBuf = alsa.Buffer{
Format: alsa.BufferFormat{
Channels: 1,
SampleFormat: b.Format.SampleFormat,
Rate: b.Format.Rate,
},
Data: mono,
}
return newBuf, nil
}
// gcd is used for calculating the greatest common divisor of two positive integers, a and b.

View File

@ -71,7 +71,7 @@ func TestResample(t *testing.T) {
}
// Compare result with expected.
if !bytes.Equal(resampled, exp) {
if !bytes.Equal(resampled.Data, exp) {
t.Error("Resampled data does not match expected result.")
}
}
@ -112,7 +112,7 @@ func TestStereoToMono(t *testing.T) {
}
// Compare result with expected.
if !bytes.Equal(mono, exp) {
if !bytes.Equal(mono.Data, exp) {
t.Error("Converted data does not match expected result.")
}
}

View File

@ -28,7 +28,7 @@ package pes
import "github.com/Comcast/gots"
const MaxPesSize = 64 * 1 << 10 // 65536
const MaxPesSize = 64 * 1 << 10
/*
The below data struct encapsulates the fields of an PES packet. Below is

View File

@ -30,7 +30,6 @@ import (
"bytes"
"errors"
"fmt"
"io"
"sync"
"time"
@ -57,7 +56,7 @@ const (
stopped
)
// Rates contains the audio sample rates used by audio.
// Rates contains the standard audio sample rates used by package audio.
var Rates = [8]int{8000, 16000, 32000, 44100, 48000, 88200, 96000, 192000}
// Device holds everything we need to know about the audio input stream.
@ -98,31 +97,41 @@ type Logger interface {
// NewDevice initializes and returns an Device which can be started, read from, and stopped.
func NewDevice(cfg *Config, l Logger) (*Device, error) {
d := &Device{}
d.Config = cfg
d.l = l
d := &Device{
Config: cfg,
l: l,
}
// Open the requested audio device.
err := d.open()
if err != nil {
d.l.Log(logger.Error, pkg+"failed to open audio device", "error", err.Error())
return nil, errors.New("failed to open audio device")
d.l.Log(logger.Error, pkg+"failed to open device")
return nil, err
}
// Setup ring buffer to capture audio in periods of d.RecPeriod seconds and buffer rbDuration seconds in total.
// Setup the device to record with desired period.
d.ab = d.dev.NewBufferDuration(time.Duration(d.RecPeriod * float64(time.Second)))
cs := (float64((len(d.ab.Data)/d.dev.BufferFormat().Channels)*d.Channels) / float64(d.dev.BufferFormat().Rate)) * float64(d.SampleRate)
if cs < 1 {
d.l.Log(logger.Error, pkg+"given Config parameters are too small", "error", err.Error())
// Account for channel conversion.
chunkSize := float64(len(d.ab.Data) / d.dev.BufferFormat().Channels * d.Channels)
// Account for resampling.
chunkSize = (chunkSize / float64(d.dev.BufferFormat().Rate)) * float64(d.SampleRate)
if chunkSize < 1 {
return nil, errors.New("given Config parameters are too small")
}
// Account for codec conversion.
if d.Codec == codecutil.ADPCM {
d.chunkSize = adpcm.EncBytes(int(cs))
d.chunkSize = adpcm.EncBytes(int(chunkSize))
} else {
d.chunkSize = int(cs)
d.chunkSize = int(chunkSize)
}
// Create ring buffer with appropriate chunk size.
d.rb = ring.NewBuffer(rbLen, d.chunkSize, rbTimeout)
// Start device in paused mode.
d.mode = paused
go d.input()
@ -211,10 +220,11 @@ func (d *Device) open() error {
// 2 channels is what most devices need to record in. If mono is requested,
// the recording will be converted in formatBuffer().
_, err = d.dev.NegotiateChannels(2)
devChan, err := d.dev.NegotiateChannels(2)
if err != nil {
return err
}
d.l.Log(logger.Debug, pkg+"alsa device channels set", "channels", devChan)
// Try to negotiate a rate to record in that is divisible by the wanted rate
// so that it can be easily downsampled to the wanted rate.
@ -222,15 +232,16 @@ func (d *Device) open() error {
// Eg. the audioinjector sound card is supposed to record at 8000Hz and 16000Hz but it can't due to a firmware issue,
// a fix for this is to remove 8000 and 16000 from the Rates slice.
foundRate := false
var devRate int
for i := 0; i < len(Rates) && !foundRate; i++ {
if Rates[i] < d.SampleRate {
continue
}
if Rates[i]%d.SampleRate == 0 {
_, err = d.dev.NegotiateRate(Rates[i])
devRate, err = d.dev.NegotiateRate(Rates[i])
if err == nil {
foundRate = true
d.l.Log(logger.Debug, pkg+"Sample rate set", "rate", Rates[i])
d.l.Log(logger.Debug, pkg+"alsa device sample rate set", "rate", devRate)
}
}
}
@ -238,11 +249,11 @@ func (d *Device) open() error {
// If no easily divisible rate is found, then use the default rate.
if !foundRate {
d.l.Log(logger.Warning, pkg+"Unable to sample at requested rate, default used.", "rateRequested", d.SampleRate)
_, err = d.dev.NegotiateRate(defaultSampleRate)
devRate, err = d.dev.NegotiateRate(defaultSampleRate)
if err != nil {
return err
}
d.l.Log(logger.Debug, pkg+"Sample rate set", "rate", defaultSampleRate)
d.l.Log(logger.Debug, pkg+"alsa device sample rate set", "rate", devRate)
}
var aFmt alsa.FormatType
@ -254,21 +265,46 @@ func (d *Device) open() error {
default:
return fmt.Errorf("unsupported sample bits %v", d.BitDepth)
}
_, err = d.dev.NegotiateFormat(aFmt)
devFmt, err := d.dev.NegotiateFormat(aFmt)
if err != nil {
return err
}
var devBits int
switch devFmt {
case alsa.S16_LE:
devBits = 16
case alsa.S32_LE:
devBits = 32
default:
return fmt.Errorf("unsupported sample bits %v", d.BitDepth)
}
d.l.Log(logger.Debug, pkg+"alsa device bit depth set", "bitdepth", devBits)
// Either 8192 or 16384 bytes is a reasonable ALSA buffer size.
_, err = d.dev.NegotiateBufferSize(8192, 16384)
// A 50ms period is a sensible value for low-ish latency. (this could be made configurable if needed)
// Some devices only accept even period sizes while others want powers of 2.
// So we will find the closest power of 2 to the desired period size.
const wantPeriod = 0.05 //seconds
secondSize := devRate * devChan * (devBits / 8)
wantPeriodSize := int(float64(secondSize) * wantPeriod)
nearWantPeriodSize := nearestPowerOfTwo(wantPeriodSize)
devPeriodSize, err := d.dev.NegotiatePeriodSize(nearWantPeriodSize)
if err != nil {
return err
}
d.l.Log(logger.Debug, pkg+"alsa device period size set", "periodsize", devPeriodSize)
devBufferSize, err := d.dev.NegotiateBufferSize(devPeriodSize * 2)
if err != nil {
return err
}
d.l.Log(logger.Debug, pkg+"alsa device buffer size set", "buffersize", devBufferSize)
if err = d.dev.Prepare(); err != nil {
return err
}
d.l.Log(logger.Debug, pkg+"Successfully negotiated ALSA params")
d.l.Log(logger.Debug, pkg+"successfully negotiated ALSA params")
return nil
}
@ -307,7 +343,7 @@ func (d *Device) input() {
}
// Process audio.
d.l.Log(logger.Debug, "processing audio")
d.l.Log(logger.Debug, pkg+"processing audio")
toWrite := d.formatBuffer()
// Write audio to ringbuffer.
@ -328,24 +364,15 @@ func (d *Device) input() {
func (d *Device) Read(p []byte) (n int, err error) {
// Ready ringbuffer for read.
_, err = d.rb.Next(rbNextTimeout)
switch err {
case nil:
case ring.ErrTimeout:
return 0, nil
default:
if err != nil {
return 0, err
}
// Read from ring buffer.
n, err = d.rb.Read(p)
switch err {
case nil:
case io.EOF:
return 0, nil
default:
if err != nil {
return 0, err
}
return n, nil
}
@ -357,13 +384,12 @@ func (d *Device) formatBuffer() alsa.Buffer {
if d.ab.Format.Channels == d.Channels && d.ab.Format.Rate == d.SampleRate {
return d.ab
}
formatted := alsa.Buffer{Format: d.ab.Format, Data: d.ab.Data}
var formatted alsa.Buffer
if d.ab.Format.Channels != d.Channels {
// Convert channels.
// TODO(Trek): Make this work for conversions other than stereo to mono.
if d.ab.Format.Channels == 2 && d.Channels == 1 {
formatted.Data, err = pcm.StereoToMono(d.ab)
formatted, err = pcm.StereoToMono(d.ab)
if err != nil {
d.l.Log(logger.Fatal, pkg+"channel conversion failed", "error", err.Error())
}
@ -372,7 +398,7 @@ func (d *Device) formatBuffer() alsa.Buffer {
if d.ab.Format.Rate != d.SampleRate {
// Convert rate.
formatted.Data, err = pcm.Resample(formatted, d.SampleRate)
formatted, err = pcm.Resample(formatted, d.SampleRate)
if err != nil {
d.l.Log(logger.Fatal, pkg+"rate conversion failed", "error", err.Error())
}
@ -394,3 +420,28 @@ func (d *Device) formatBuffer() alsa.Buffer {
return formatted
}
// nearestPowerOfTwo finds and returns the nearest power of two to the given integer.
// If the lower and higher power of two are the same distance, it returns the higher power.
// For negative values, 1 is returned.
func nearestPowerOfTwo(n int) int {
if n <= 0 {
return 1
}
if n == 1 {
return 2
}
v := n
v--
v |= v >> 1
v |= v >> 2
v |= v >> 4
v |= v >> 8
v |= v >> 16
v++ // higher power of 2
x := v >> 1 // lower power of 2
if (v - n) > (n - x) {
return x
}
return v
}

View File

@ -144,3 +144,13 @@ func TestDevice(t *testing.T) {
time.Sleep(time.Duration(ac.RecPeriod*float64(time.Second)) * time.Duration(n))
ai.Stop()
}
func TestNearestPowerOfTwo(t *testing.T) {
testValues := []int{36, 47, 3, 46, 7, 2, 36, 757, 2464, 18980, 70000, 8192, 2048, 65536, -2048, -127, -1, 0, 1}
testAnswers := []int{32, 32, 4, 32, 8, 2, 32, 512, 2048, 16384, 65536, 8192, 2048, 65536, 1, 1, 1, 1, 2}
for i, v := range testValues {
if r := nearestPowerOfTwo(v); testAnswers[i] != r {
t.Errorf("test %v gave incorrect result: %v, should be %v", i, r, testAnswers[i])
}
}
}