Merged in gardening/rtmp-safe-packets (pull request #59)

rtmp: make packet handling safer

Approved-by: Alan Noble <anoble@gmail.com>
This commit is contained in:
kortschak 2018-10-02 10:09:26 +00:00
commit 85b29ff9db
8 changed files with 780 additions and 1653 deletions

View File

@ -33,15 +33,10 @@ LICENSE
*/ */
package rtmp package rtmp
/*
#include <stdlib.h>
*/
import "C"
import ( import (
"encoding/binary" "encoding/binary"
"log" "log"
"unsafe" "math"
) )
var ( var (
@ -56,242 +51,182 @@ const (
// unsigned short AMF_DecodeInt16(const char* data); // unsigned short AMF_DecodeInt16(const char* data);
// amf.c +41 // amf.c +41
func C_AMF_DecodeInt16(data *byte) uint16 { func C_AMF_DecodeInt16(data []byte) uint16 {
c := unsafe.Pointer(data) return uint16(data[0])<<8 | uint16(data[1])
return uint16(*(*uint8)(c)<<8 | *(*byte)(incBytePtr(c, 1)))
} }
// unsigned int AMF_DecodeInt24(const char* data); // unsigned int AMF_DecodeInt24(const char* data);
// amf.c +50 // amf.c +50
func C_AMF_DecodeInt24(data *byte) uint32 { func C_AMF_DecodeInt24(data []byte) uint32 {
c := (*[3]byte)(unsafe.Pointer(data)) return uint32(data[0])<<16 | uint32(data[1])<<8 | uint32(data[2])
return (uint32(c[0]) << 16) | (uint32(c[1]) << 8) | uint32(c[2])
/*
// TODO Understand logic and simplify
c := (*uint8)(unsafe.Pointer(data))
dst := uint32(int32(*c) << 16)
dst |= uint32(int32(*((*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(c)) +
(uintptr)(int32(1))*unsafe.Sizeof(*c))))) << 8)
dst |= uint32(int32(*((*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(c)) +
(uintptr)(int32(2))*unsafe.Sizeof(*c))))))
return dst
*/
} }
// unsigned int AMF_DeocdeInt32(const char* data); // unsigned int AMF_DeocdeInt32(const char* data);
// amf.c +59 // amf.c +59
func C_AMF_DecodeInt32(data *byte) uint32 { func C_AMF_DecodeInt32(data []byte) uint32 {
c := (*uint8)(data) return uint32(data[0])<<24 | uint32(data[1])<<16 | uint32(data[2])<<8 | uint32(data[3])
val := uint32(
int32(*c)<<24 |
int32(*(*uint8)(incBytePtr(unsafe.Pointer(c), 1)))<<16 |
int32(*(*uint8)(incBytePtr(unsafe.Pointer(c), 2)))<<8 |
int32(*(*uint8)(incBytePtr(unsafe.Pointer(c), 3))))
return uint32(val)
} }
// void AMF_DecodeString(const char* data, C_AVal* bv); // void AMF_DecodeString(const char* data, C_AVal* bv);
// amf.c +68 // amf.c +68
func C_AMF_DecodeString(data *byte) string { func C_AMF_DecodeString(data []byte) string {
n := C_AMF_DecodeInt16(data) n := C_AMF_DecodeInt16(data)
if n == 0 { return string(data[2 : 2+n])
return ""
}
return string((*[_Gi]byte)(incBytePtr(unsafe.Pointer(data), 2))[:n])
} }
// void AMF_DecodeLongString(const char *data, AVal *bv); // void AMF_DecodeLongString(const char *data, AVal *bv);
// amf.c +75 // amf.c +75
func C_AMF_DecodeLongString(data *byte) string { func C_AMF_DecodeLongString(data []byte) string {
n := C_AMF_DecodeInt32(data) n := C_AMF_DecodeInt32(data)
if n == 0 { return string(data[2 : 2+n])
return ""
}
return string((*[_Gi]byte)(incBytePtr(unsafe.Pointer(data), 4))[:n])
} }
// double AMF_DecodeNumber(const char* data); // double AMF_DecodeNumber(const char* data);
// amf.c +82 // amf.c +82
func C_AMF_DecodeNumber(data *byte) float64 { func C_AMF_DecodeNumber(data []byte) float64 {
var dVal float64 return math.Float64frombits(binary.BigEndian.Uint64(data))
var ci, co *uint8
ci = (*uint8)(unsafe.Pointer(data))
co = (*uint8)(unsafe.Pointer(&dVal))
for i := 0; i < 8; i++ {
(*[_Gi]byte)(unsafe.Pointer(co))[i] = (*[_Gi]byte)(unsafe.Pointer(ci))[7-i]
}
return dVal
} }
// int AMF_DecodeBoolean(const char *data); // int AMF_DecodeBoolean(const char *data);
// amf.c +132 // amf.c +132
func C_AMF_DecodeBoolean(data *byte) bool { func C_AMF_DecodeBoolean(data []byte) bool {
return *data != 0 return data[0] != 0
}
// char* AMF_EncodeInt16(char* output, char* outend, short nVal);
// amf.c +138
func C_AMF_EncodeInt16(output *byte, outend *byte, nVal int16) *byte {
outputPtr := unsafe.Pointer(output)
outendPtr := unsafe.Pointer(outend)
if uintptr(outputPtr)+2 > uintptr(outendPtr) {
// length < 2
return nil
}
// Assign output[1]
second := (*byte)(incBytePtr(outputPtr, 1))
*second = (byte)(nVal & 0xff)
// Assign output[0]
*output = (byte)(nVal >> 8)
return (*byte)(incBytePtr(outputPtr, 2))
} }
// char* AMF_EncodeInt24(char* output, char* outend, int nVal); // char* AMF_EncodeInt24(char* output, char* outend, int nVal);
// amf.c +149 // amf.c +149
func C_AMF_EncodeInt24(output *byte, outend *byte, nVal int32) *byte { func C_AMF_EncodeInt24(dst []byte, val int32) []byte {
outputPtr := unsafe.Pointer(output) if len(dst) < 3 {
outendPtr := unsafe.Pointer(outend)
if uintptr(outputPtr)+3 > uintptr(outendPtr) {
// length < 3
return nil return nil
} }
// Assign output[2] _ = dst[2]
third := (*byte)(incBytePtr(outputPtr, 2)) dst[0] = byte(val >> 16)
*third = (byte)(nVal & 0xff) dst[1] = byte(val >> 8)
// Assign output[1] dst[2] = byte(val)
second := (*byte)(incBytePtr(outputPtr, 1)) if len(dst) == 3 {
*second = (byte)(nVal >> 8) return nil
// Assign output[0] }
*output = (byte)(nVal >> 16) return dst[3:]
return (*byte)(incBytePtr(outputPtr, 3))
} }
// char* AMF_EncodeInt32(char* output, char* outend, int nVal); // char* AMF_EncodeInt32(char* output, char* outend, int nVal);
// amf.c +161 // amf.c +160
func C_AMF_EncodeInt32(output *byte, outend *byte, nVal int32) *byte { func C_AMF_EncodeInt32(dst []byte, val int32) []byte {
outputPtr := unsafe.Pointer(output) if len(dst) < 4 {
outendPtr := unsafe.Pointer(outend)
if uintptr(outputPtr)+4 > uintptr(outendPtr) {
// length < 4
return nil return nil
} }
// Assign output[3] binary.BigEndian.PutUint32(dst, uint32(val))
forth := (*byte)(incBytePtr(outputPtr, 3)) if len(dst) == 4 {
*forth = (byte)(nVal & 0xff) return nil
// Assign output[2] }
third := (*byte)(incBytePtr(outputPtr, 2)) return dst[4:]
*third = (byte)(nVal >> 8)
// Assign output[1]
second := (*byte)(incBytePtr(outputPtr, 1))
*second = (byte)(nVal >> 16)
// Assign output[0]
*output = (byte)(nVal >> 24)
return (*byte)(incBytePtr(outputPtr, 4))
} }
// char* AMF_EncodeString(char* output, char* outend, const C_AVal* bv); // char* AMF_EncodeString(char* output, char* outend, const C_AVal* bv);
// amf.c +174 // amf.c +173
func C_AMF_EncodeString(output *byte, outend *byte, s string) *byte { func C_AMF_EncodeString(dst []byte, val string) []byte {
buflen := int(uintptr(unsafe.Pointer(outend)) - uintptr(unsafe.Pointer(output))) const typeSize = 1
if len(s) < 65536 && 1+2+len(s) > buflen { if len(val) < 65536 && len(val)+typeSize+binary.Size(int16(0)) > len(dst) {
return nil return nil
} }
if 1+4+len(s) > buflen { if len(val)+typeSize+binary.Size(int32(0)) > len(dst) {
return nil return nil
} }
outputPtr := unsafe.Pointer(output)
dst := (*[_Gi]byte)(unsafe.Pointer(output))[:buflen] if len(val) < 65536 {
if len(s) < 65536 {
dst[0] = AMF_STRING dst[0] = AMF_STRING
binary.BigEndian.PutUint16(dst[1:3], uint16(len(s))) dst = dst[1:]
copy(dst[3:], s) binary.BigEndian.PutUint16(dst[:2], uint16(len(val)))
outputPtr = incBytePtr(outputPtr, 3+len(s)) dst = dst[2:]
} else { copy(dst, val)
dst[0] = AMF_LONG_STRING if len(dst) == len(val) {
binary.BigEndian.PutUint32(dst[1:5], uint32(len(s))) return nil
copy(dst[5:], s)
outputPtr = incBytePtr(outputPtr, 5+len(s))
} }
return (*byte)(outputPtr) return dst[len(val):]
}
dst[0] = AMF_LONG_STRING
dst = dst[1:]
binary.BigEndian.PutUint32(dst[:4], uint32(len(val)))
dst = dst[4:]
copy(dst, val)
if len(dst) == len(val) {
return nil
}
return dst[len(val):]
} }
// char* AMF_EncodeNumber(char* output, char* outend, double dVal); // char* AMF_EncodeNumber(char* output, char* outend, double dVal);
// amf.c +199 // amf.c +199
func C_AMF_EncodeNumber(output *byte, outend *byte, dVal float64) *byte { func C_AMF_EncodeNumber(dst []byte, val float64) []byte {
if int(uintptr(unsafe.Pointer(output)))+1+8 > int(uintptr(unsafe.Pointer(outend))) { if len(dst) < 9 {
return nil return nil
} }
// TODO: port this dst[0] = AMF_NUMBER
*(*byte)(unsafe.Pointer(output)) = AMF_NUMBER dst = dst[1:]
output = (*byte)(incBytePtr(unsafe.Pointer(output), 1)) binary.BigEndian.PutUint64(dst, math.Float64bits(val))
// NOTE: here we are assuming little endian for both byte order and float return dst[8:]
// word order
var ci, co *uint8
ci = (*uint8)(unsafe.Pointer(&dVal))
co = (*uint8)(unsafe.Pointer(output))
for i := 0; i < 8; i++ {
(*[_Gi]byte)(unsafe.Pointer(co))[i] = (*[_Gi]byte)(unsafe.Pointer(ci))[7-i]
}
return (*byte)(incBytePtr(unsafe.Pointer(output), 8))
} }
// char* AMF_EncodeBoolean(char* output, char* outend, int bVal); // char* AMF_EncodeBoolean(char* output, char* outend, int bVal);
// amf.c +260 // amf.c +260
func C_AMF_EncodeBoolean(output *byte, outend *byte, bVal bool) *byte { func C_AMF_EncodeBoolean(dst []byte, val bool) []byte {
if int(uintptr(unsafe.Pointer(output)))+2 > int(uintptr(unsafe.Pointer(outend))) { if len(dst) < 2 {
return nil return nil
} }
*(*byte)(unsafe.Pointer(output)) = AMF_BOOLEAN dst[0] = AMF_BOOLEAN
output = (*byte)(incBytePtr(unsafe.Pointer(output), 1)) if val {
var val byte dst[1] = 1
if bVal {
val = 1
} }
*(*byte)(unsafe.Pointer(output)) = val if len(dst) == 2 {
output = (*byte)(incBytePtr(unsafe.Pointer(output), 1)) return nil
return output }
return dst[2:]
} }
// char* AMF_EncodeNamedString(char* output, char* outend, const C_AVal* strName, const C_AVal* strValue); // char* AMF_EncodeNamedString(char* output, char* outend, const C_AVal* strName, const C_AVal* strValue);
// amf.c +273 // amf.c +273
func C_AMF_EncodeNamedString(output *byte, outend *byte, key, val string) *byte { func C_AMF_EncodeNamedString(dst []byte, key, val string) []byte {
buflen := int(uintptr(unsafe.Pointer(outend)) - uintptr(unsafe.Pointer(output))) if 2+len(key) > len(dst) {
if 2+len(key) > buflen {
return nil return nil
} }
dst := (*[_Gi]byte)(unsafe.Pointer(output))[:buflen]
binary.BigEndian.PutUint16(dst[:2], uint16(len(key))) binary.BigEndian.PutUint16(dst[:2], uint16(len(key)))
copy(dst[2:], key) dst = dst[2:]
output = (*byte)(incBytePtr(unsafe.Pointer(output), 2+len(key))) copy(dst, key)
return C_AMF_EncodeString(output, outend, val) if len(key) == len(dst) {
return nil
}
return C_AMF_EncodeString(dst[len(key):], val)
} }
// char* AMF_EncodeNamedNumber(char* output, char* outend, const C_AVal* strName, double dVal); // char* AMF_EncodeNamedNumber(char* output, char* outend, const C_AVal* strName, double dVal);
// amf.c +286 // amf.c +286
func C_AMF_EncodeNamedNumber(output *byte, outend *byte, key string, val float64) *byte { func C_AMF_EncodeNamedNumber(dst []byte, key string, val float64) []byte {
buflen := int(uintptr(unsafe.Pointer(outend)) - uintptr(unsafe.Pointer(output))) if 2+len(key) > len(dst) {
if 2+len(key) > buflen {
return nil return nil
} }
dst := (*[_Gi]byte)(unsafe.Pointer(output))[:buflen]
binary.BigEndian.PutUint16(dst[:2], uint16(len(key))) binary.BigEndian.PutUint16(dst[:2], uint16(len(key)))
copy(dst[2:], key) dst = dst[2:]
output = (*byte)(incBytePtr(unsafe.Pointer(output), 2+len(key))) copy(dst, key)
return C_AMF_EncodeNumber(output, outend, val) if len(key) == len(dst) {
return nil
}
return C_AMF_EncodeNumber(dst[len(key):], val)
} }
// char* AMF_EncodeNamedBoolean(char* output, char* outend, const C_AVal* strname, int bVal); // char* AMF_EncodeNamedBoolean(char* output, char* outend, const C_AVal* strname, int bVal);
// amf.c +299 // amf.c +299
func C_AMF_EncodeNamedBoolean(output *byte, outend *byte, key string, val bool) *byte { func C_AMF_EncodeNamedBoolean(dst []byte, key string, val bool) []byte {
buflen := int(uintptr(unsafe.Pointer(outend)) - uintptr(unsafe.Pointer(output))) if 2+len(key) > len(dst) {
if 2+len(key) > buflen {
return nil return nil
} }
dst := (*[_Gi]byte)(unsafe.Pointer(output))[:buflen]
binary.BigEndian.PutUint16(dst[:2], uint16(len(key))) binary.BigEndian.PutUint16(dst[:2], uint16(len(key)))
copy(dst[2:], key) dst = dst[2:]
output = (*byte)(incBytePtr(unsafe.Pointer(output), 2+len(key))) copy(dst, key)
return C_AMF_EncodeBoolean(output, outend, val) if len(key) == len(dst) {
return nil
}
return C_AMF_EncodeBoolean(dst[len(key):], val)
} }
// void AMFProp_SetName(AMFObjectProperty *prop, AVal *name); // void AMFProp_SetName(AMFObjectProperty *prop, AVal *name);
@ -303,7 +238,7 @@ func C_AMFProp_SetName(prop *C_AMFObjectProperty, name string) {
// double AMFProp_GetNumber(AMFObjectProperty* prop); // double AMFProp_GetNumber(AMFObjectProperty* prop);
// amf.c +330 // amf.c +330
func C_AMFProp_GetNumber(prop *C_AMFObjectProperty) float64 { func C_AMFProp_GetNumber(prop *C_AMFObjectProperty) float64 {
return float64(prop.p_vu.p_number) return prop.p_vu.p_number
} }
// void AMFProp_GetString(AMFObjectProperty* prop, AVal* str); // void AMFProp_GetString(AMFObjectProperty* prop, AVal* str);
@ -327,140 +262,61 @@ func C_AMFProp_GetObject(prop *C_AMFObjectProperty, obj *C_AMFObject) {
// char* AMFPropEncode(AMFOBjectProperty* prop, char* pBufer, char* pBufEnd); // char* AMFPropEncode(AMFOBjectProperty* prop, char* pBufer, char* pBufEnd);
// amf.c +366 // amf.c +366
func C_AMF_PropEncode(p *C_AMFObjectProperty, pBuffer *byte, pBufEnd *byte) *byte { func C_AMF_PropEncode(p *C_AMFObjectProperty, dst []byte) []byte {
if p.p_type == AMF_INVALID { if p.p_type == AMF_INVALID {
return nil return nil
} }
buflen := int(uintptr(unsafe.Pointer(pBufEnd)) - uintptr(unsafe.Pointer(pBuffer))) if p.p_type != AMF_NULL && len(p.p_name)+2+1 >= len(dst) {
if p.p_type != AMF_NULL && len(p.p_name)+2+1 >= buflen {
return nil return nil
} }
if p.p_type != AMF_NULL && len(p.p_name) != 0 { if p.p_type != AMF_NULL && len(p.p_name) != 0 {
(*[_Gi]byte)(unsafe.Pointer(pBuffer))[0] = byte(len(p.p_name) >> 8) binary.BigEndian.PutUint16(dst[:2], uint16(len(p.p_name)))
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1)) dst = dst[2:]
(*[_Gi]byte)(unsafe.Pointer(pBuffer))[0] = byte(len(p.p_name) & 0xff) copy(dst, p.p_name)
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1)) dst = dst[len(p.p_name):]
copy((*[_Gi]byte)(unsafe.Pointer(pBuffer))[:], p.p_name)
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), len(p.p_name)))
} }
switch p.p_type { switch p.p_type {
case AMF_NUMBER: case AMF_NUMBER:
pBuffer = C_AMF_EncodeNumber(pBuffer, pBufEnd, float64(p.p_vu.p_number)) dst = C_AMF_EncodeNumber(dst, p.p_vu.p_number)
case AMF_BOOLEAN: case AMF_BOOLEAN:
pBuffer = C_AMF_EncodeBoolean(pBuffer, pBufEnd, p.p_vu.p_number != 0) dst = C_AMF_EncodeBoolean(dst, p.p_vu.p_number != 0)
case AMF_STRING: case AMF_STRING:
pBuffer = C_AMF_EncodeString(pBuffer, pBufEnd, p.p_vu.p_aval) dst = C_AMF_EncodeString(dst, p.p_vu.p_aval)
case AMF_NULL: case AMF_NULL:
buflen = int(uintptr(unsafe.Pointer(pBufEnd)) - uintptr(unsafe.Pointer(pBuffer))) if len(dst) < 2 {
if 1 >= buflen {
return nil return nil
} }
*(*byte)(unsafe.Pointer(pBuffer)) = AMF_NULL dst[0] = AMF_NULL
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1)) dst = dst[1:]
case AMF_OBJECT: case AMF_OBJECT:
pBuffer = C_AMF_Encode(&p.p_vu.p_object, pBuffer, pBufEnd) dst = C_AMF_Encode(&p.p_vu.p_object, dst)
//pBuffer = (*byte)(unsafe.Pointer(C.AMF_Encode(&p.p_vu.p_object, (*byte)(
//unsafe.Pointer(pBuffer)), (*byte)(unsafe.Pointer(pBufEnd)))))
case AMF_ECMA_ARRAY: case AMF_ECMA_ARRAY:
pBuffer = C_AMF_EncodeEcmaArray(&p.p_vu.p_object, pBuffer, pBufEnd) dst = C_AMF_EncodeEcmaArray(&p.p_vu.p_object, dst)
//pBuffer = (*byte)(unsafe.Pointer(C.AMF_EncodeEcmaArray(&p.p_vu.p_object, (*byte)(unsafe.Pointer(pBuffer)), (*byte)(unsafe.Pointer(pBufEnd)))))
case AMF_STRICT_ARRAY: case AMF_STRICT_ARRAY:
//pBuffer = (*byte)(unsafe.Pointer(C.AMF_EncodeArray(&p.p_vu.p_object, (*byte)(unsafe.Pointer(pBuffer)), (*byte)(unsafe.Pointer(pBufEnd))))) dst = C_AMF_EncodeArray(&p.p_vu.p_object, dst)
pBuffer = C_AMF_EncodeArray(&p.p_vu.p_object, pBuffer, pBufEnd)
default: default:
log.Println("C_AMF_PropEncode: invalid type!") log.Println("C_AMF_PropEncode: invalid type!")
pBuffer = nil dst = nil
} }
return pBuffer return dst
}
// int AMF3ReadInteger(const char *data, int32_t *valp);
// amf.c +426
// TODO test
func C_AMF3ReadInteger(data *byte, valp *int32) int32 {
var i int
var val int32
for i <= 2 {
/* handle first 3 bytes */
if (*[_Gi]byte)(unsafe.Pointer(data))[i]&0x80 != 0 {
/* byte used */
val <<= 7 /* shift up */
val |= int32((*[_Gi]byte)(unsafe.Pointer(data))[i] & 0x7f) /* add bits */
i++
} else {
break
}
}
if i > 2 {
/* use 4th byte, all 8bits */
val <<= 8
val |= int32((*[_Gi]byte)(unsafe.Pointer(data))[3])
/* range check */
if val > AMF3_INTEGER_MAX {
val -= (1 << 29)
}
} else {
/* use 7bits of last unparsed byte (0xxxxxxx) */
val <<= 7
val |= int32((*[_Gi]byte)(unsafe.Pointer(data))[i])
}
*valp = val
if i > 2 {
return 4
}
return int32(i + 1)
}
// int AMF3ReadString(const char *data, AVal *str);
// amf.c +466
func C_AMF3ReadString(data *byte, str *string) int32 {
var ref int32
// assert elided - we will get a panic if it's nil.
len := C_AMF3ReadInteger(data, &ref)
data = (*byte)(sliceToPtr((*[_Gi]byte)(unsafe.Pointer(data))[len:]))
if ref&0x1 == 0 {
/* reference: 0xxx */
// TODO(kortschak) Logging.
// refIndex := (ref >> 1)
// RTMP_Log(RTMP_LOGDEBUG,
// "%s, string reference, index: %d, not supported, ignoring!",
// __FUNCTION__, refIndex);
*str = ""
return len
} else {
nSize := (ref >> 1)
*str = string((*[_Gi]byte)(unsafe.Pointer(data))[:nSize])
return len + nSize
}
return len
} }
// int AMFProp_Decode(C_AMFObjectProperty* prop, const char* pBuffer, int nSize, int bDecodeName); // int AMFProp_Decode(C_AMFObjectProperty* prop, const char* pBuffer, int nSize, int bDecodeName);
// amf.c +619 // amf.c +619
func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeName int32) int32 { func C_AMFProp_Decode(prop *C_AMFObjectProperty, data []byte, bDecodeName int32) int32 {
var nOriginalSize int32 = nSize
var nRes int32
prop.p_name = "" prop.p_name = ""
if nSize == 0 || pBuffer == nil { nOriginalSize := len(data)
if len(data) == 0 {
// TODO use new logger here // TODO use new logger here
// RTMP_Log(RTMP_LOGDEBUG, "%s: Empty buffer/no buffer pointer!", __FUNCTION__); // RTMP_Log(RTMP_LOGDEBUG, "%s: Empty buffer/no buffer pointer!", __FUNCTION__);
return -1 return -1
} }
if bDecodeName != 0 && nSize < 4 { if bDecodeName != 0 && len(data) < 4 {
// at least name (length + at least 1 byte) and 1 byte of data // at least name (length + at least 1 byte) and 1 byte of data
// TODO use new logger here // TODO use new logger here
// RTMP_Log(RTMP_LOGDEBUG, "%s: Not enough data for decoding with name, less than 4 bytes!",__FUNCTION__); // RTMP_Log(RTMP_LOGDEBUG, "%s: Not enough data for decoding with name, less than 4 bytes!",__FUNCTION__);
@ -468,53 +324,50 @@ func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeNa
} }
if bDecodeName != 0 { if bDecodeName != 0 {
nNameSize := C_AMF_DecodeInt16(pBuffer) nNameSize := C_AMF_DecodeInt16(data[:2])
if int32(nNameSize) > nSize-2 { if int(nNameSize) > len(data)-2 {
// TODO use new logger here // TODO use new logger here
//RTMP_Log(RTMP_LOGDEBUG, "%s: Name size out of range: namesize (%d) > len (%d) - 2",__FUNCTION__, nNameSize, nSize); //RTMP_Log(RTMP_LOGDEBUG, "%s: Name size out of range: namesize (%d) > len (%d) - 2",__FUNCTION__, nNameSize, nSize);
return -1 return -1
} }
prop.p_name = C_AMF_DecodeString(pBuffer) prop.p_name = C_AMF_DecodeString(data)
nSize -= int32(2 + nNameSize) data = data[2+nNameSize:]
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), int(2+nNameSize)))
} }
if nSize == 0 { if len(data) == 0 {
return -1 return -1
} }
nSize-- prop.p_type = C_AMFDataType(data[0])
data = data[1:]
prop.p_type = (C_AMFDataType)(int32(*pBuffer))
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
var nRes int32
switch prop.p_type { switch prop.p_type {
case AMF_NUMBER: case AMF_NUMBER:
if nSize < 8 { if len(data) < 8 {
return -1 return -1
} }
prop.p_vu.p_number = float64(C_AMF_DecodeNumber(pBuffer)) prop.p_vu.p_number = C_AMF_DecodeNumber(data[:8])
nSize -= 8 data = data[8:]
case AMF_BOOLEAN: case AMF_BOOLEAN:
panic("AMF_BOOLEAN not supported") panic("AMF_BOOLEAN not supported")
case AMF_STRING: case AMF_STRING:
var nStringSize = C_AMF_DecodeInt16(pBuffer) nStringSize := C_AMF_DecodeInt16(data[:2])
if len(data) < int(nStringSize+2) {
if int64(nSize) < int64(nStringSize)+2 {
return -1 return -1
} }
prop.p_vu.p_aval = C_AMF_DecodeString(pBuffer) prop.p_vu.p_aval = C_AMF_DecodeString(data)
nSize -= int32(2 + nStringSize) data = data[2+nStringSize:]
case AMF_OBJECT: case AMF_OBJECT:
var nRes int32 = int32(C_AMF_Decode(&prop.p_vu.p_object, pBuffer, nSize, 1)) nRes := C_AMF_Decode(&prop.p_vu.p_object, data, 1)
if nRes == -1 { if nRes == -1 {
return -1 return -1
} }
nSize -= nRes data = data[nRes:]
case AMF_MOVIECLIP: case AMF_MOVIECLIP:
// TODO use new logger here // TODO use new logger here
@ -526,26 +379,21 @@ func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeNa
prop.p_type = AMF_NULL prop.p_type = AMF_NULL
case AMF_REFERENCE: case AMF_REFERENCE:
// TODO use new logger here // TODO use new logger here
log.Println("AMFProp_Decode: AMF_REFERENCE not supported!") log.Println("AMFProp_Decode: AMF_REFERENCE not supported!")
//RTMP_Log(RTMP_LOGERROR, "AMF_REFERENCE not supported!"); //RTMP_Log(RTMP_LOGERROR, "AMF_REFERENCE not supported!");
return -1 return -1
case AMF_ECMA_ARRAY: case AMF_ECMA_ARRAY:
nSize -= 4
// next comes the rest, mixed array has a final 0x000009 mark and names, so its an object // next comes the rest, mixed array has a final 0x000009 mark and names, so its an object
nRes = C_AMF_Decode(&prop.p_vu.p_object, (*byte)(incBytePtr( data = data[4:]
unsafe.Pointer(pBuffer), 4)), nSize, 1) nRes = C_AMF_Decode(&prop.p_vu.p_object, data, 1)
if nRes == -1 { if nRes == -1 {
return -1 return -1
} }
nSize -= nRes data = data[nRes:]
case AMF_OBJECT_END: case AMF_OBJECT_END:
return -1 return -1
case AMF_STRICT_ARRAY: case AMF_STRICT_ARRAY:
@ -564,7 +412,6 @@ func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeNa
return -1 return -1
case AMF_TYPED_OBJECT: case AMF_TYPED_OBJECT:
// TODO use new logger here // TODO use new logger here
// RTMP_Log(RTMP_LOGERROR, "AMF_TYPED_OBJECT not supported!") // RTMP_Log(RTMP_LOGERROR, "AMF_TYPED_OBJECT not supported!")
return -1 return -1
@ -579,7 +426,7 @@ func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeNa
return -1 return -1
} }
return nOriginalSize - nSize return int32(nOriginalSize - len(data))
} }
// void AMFProp_Reset(AMFObjectProperty* prop); // void AMFProp_Reset(AMFObjectProperty* prop);
@ -596,225 +443,127 @@ func C_AMFProp_Reset(prop *C_AMFObjectProperty) {
// char* AMF_Encode(AMFObject* obj, char* pBuffer, char* pBufEnd); // char* AMF_Encode(AMFObject* obj, char* pBuffer, char* pBufEnd);
// amf.c +891 // amf.c +891
func C_AMF_Encode(obj *C_AMFObject, pBuffer *byte, pBufEnd *byte) *byte { func C_AMF_Encode(obj *C_AMFObject, dst []byte) []byte {
if uintptr(unsafe.Pointer(pBuffer))+uintptr(4) >= uintptr(unsafe.Pointer(pBufEnd)) { if len(dst) < 5 {
return nil return nil
} }
*pBuffer = AMF_OBJECT dst[0] = AMF_OBJECT
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1)) dst = dst[1:]
for i := 0; i < int(obj.o_num); i++ { for i := 0; i < len(obj.o_props); i++ {
res := C_AMF_PropEncode((*C_AMFObjectProperty)(incPtr(unsafe.Pointer( dst = C_AMF_PropEncode(&obj.o_props[i], dst)
obj.o_props), i, int(unsafe.Sizeof(*obj.o_props)))), pBuffer, pBufEnd) if dst == nil {
if res == nil {
log.Println("C_AMF_Encode: failed to encode property in index") log.Println("C_AMF_Encode: failed to encode property in index")
break break
} else {
pBuffer = res
} }
} }
if uintptr(incBytePtr(unsafe.Pointer(pBuffer), 3)) >= uintptr(unsafe.Pointer(pBufEnd)) { if len(dst) < 4 {
return nil return nil
} }
return C_AMF_EncodeInt24(dst, AMF_OBJECT_END)
pBuffer = C_AMF_EncodeInt24(pBuffer, pBufEnd, int32(AMF_OBJECT_END))
return pBuffer
} }
// char* AMF_EncodeEcmaArray(AMFObject* obj, char* pBuffer, char* pBufEnd); // char* AMF_EncodeEcmaArray(AMFObject* obj, char* pBuffer, char* pBufEnd);
// amf.c +924 // amf.c +924
func C_AMF_EncodeEcmaArray(obj *C_AMFObject, pBuffer *byte, pBufEnd *byte) *byte { func C_AMF_EncodeEcmaArray(obj *C_AMFObject, dst []byte) []byte {
if int(uintptr(unsafe.Pointer(pBuffer)))+4 >= int(uintptr(unsafe.Pointer(pBufEnd))) { if len(dst) < 5 {
return nil return nil
} }
*pBuffer = AMF_ECMA_ARRAY dst[0] = AMF_ECMA_ARRAY
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1)) dst = dst[1:]
binary.BigEndian.PutUint32(dst[:4], uint32(len(obj.o_props)))
dst = dst[4:]
pBuffer = C_AMF_EncodeInt32(pBuffer, pBufEnd, int32(obj.o_num)) for i := 0; i < len(obj.o_props); i++ {
dst = C_AMF_PropEncode(&obj.o_props[i], dst)
for i := 0; i < int(obj.o_num); i++ { if dst == nil {
res := C_AMF_PropEncode((*C_AMFObjectProperty)(incPtr(unsafe.Pointer(
obj.o_props), i, int(unsafe.Sizeof(*obj.o_props)))), pBuffer, pBufEnd)
if res == nil {
log.Println("C_AMF_EncodeEcmaArray: failed to encode property!") log.Println("C_AMF_EncodeEcmaArray: failed to encode property!")
break break
} else {
pBuffer = res
} }
} }
if int(uintptr(unsafe.Pointer(pBuffer)))+3 >= int(uintptr(unsafe.Pointer(pBufEnd))) { if len(dst) < 4 {
return nil return nil
} }
return C_AMF_EncodeInt24(dst, AMF_OBJECT_END)
pBuffer = C_AMF_EncodeInt24(pBuffer, pBufEnd, AMF_OBJECT_END)
return pBuffer
} }
// char* AMF_EncodeArray(AMFObject* obj, char* pBuffer, char* pBufEnd); // char* AMF_EncodeArray(AMFObject* obj, char* pBuffer, char* pBufEnd);
// amf.c +959 // amf.c +959
func C_AMF_EncodeArray(obj *C_AMFObject, pBuffer *byte, pBufEnd *byte) *byte { func C_AMF_EncodeArray(obj *C_AMFObject, dst []byte) []byte {
if int(uintptr(unsafe.Pointer(pBuffer)))+4 >= int(uintptr(unsafe.Pointer(pBufEnd))) { if len(dst) < 5 {
return nil return nil
} }
*pBuffer = AMF_STRICT_ARRAY dst[0] = AMF_STRICT_ARRAY
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1)) dst = dst[1:]
binary.BigEndian.PutUint32(dst[:4], uint32(len(obj.o_props)))
dst = dst[4:]
pBuffer = C_AMF_EncodeInt32(pBuffer, pBufEnd, int32(obj.o_num)) for i := 0; i < len(obj.o_props); i++ {
dst = C_AMF_PropEncode(&obj.o_props[i], dst)
for i := 0; i < int(obj.o_num); i++ { if dst == nil {
res := C_AMF_PropEncode((*C_AMFObjectProperty)(incPtr(unsafe.Pointer( log.Println("C_AMF_EncodeArray: failed to encode property!")
obj.o_props), i, int(unsafe.Sizeof(*obj.o_props)))), pBuffer, pBufEnd)
if res == nil {
log.Println("C_AMF_EncodeEcmaArray: failed to encode property!")
break
} else {
pBuffer = res
}
}
return pBuffer
}
// int AMF_DecodeArray(AMFObject *obj, const char *pBuffer, int nSize, int nArrayLen, int bDecodeName);
// amf.c +993
func C_AMF_DecodeArray(obj *C_AMFObject, pBuffer *byte, nSize, nArrayLen, bDecodeName int32) int32 {
nOriginalSize := nSize
var bError int32 = 0
obj.o_num = 0
obj.o_props = nil
for nArrayLen > 0 {
var prop C_AMFObjectProperty
var nRes int32
nArrayLen--
if nSize <= 0 {
bError = 1
break break
} }
nRes = C_AMFProp_Decode(&prop, pBuffer, nSize, bDecodeName)
if nRes == -1 {
bError = 1
break
} else {
nSize -= nRes
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), int(nRes)))
C_AMF_AddProp(obj, &prop)
}
}
if bError != 0 {
return -1
} }
return nOriginalSize - nSize return dst
} }
// int AMF_Decode(AMFObject *obj, const char* pBuffer, int nSize, int bDecodeName); // int AMF_Decode(AMFObject *obj, const char* pBuffer, int nSize, int bDecodeName);
// amf.c +1180 // amf.c +1180
func C_AMF_Decode(obj *C_AMFObject, pBuffer *byte, nSize int32, bDecodeName int32) int32 { func C_AMF_Decode(obj *C_AMFObject, data []byte, bDecodeName int32) int32 {
var nOriginalSize int32 = nSize nOriginalSize := len(data)
var bError int32 = 0
obj.o_num = 0 obj.o_props = obj.o_props[:0]
obj.o_props = nil for len(data) != 0 {
if len(data) >= 3 && C_AMF_DecodeInt24(data[:3]) == AMF_OBJECT_END {
for nSize > 0 { data = data[3:]
var prop C_AMFObjectProperty
var nRes int32
if nSize >= 3 && C_AMF_DecodeInt24(pBuffer) == AMF_OBJECT_END {
nSize -= 3
bError = 0
break break
} }
if bError != 0 { var prop C_AMFObjectProperty
// TODO use new logger here nRes := C_AMFProp_Decode(&prop, data, bDecodeName)
log.Println("AMF_Decode: decoding error, ignoring bytes until next known pattern!")
nSize--
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
continue
}
// TODO port AMFProp_Decode
nRes = int32(C_AMFProp_Decode(&prop, (*byte)(unsafe.Pointer(pBuffer)),
int32(nSize), int32(bDecodeName)))
// nRes = int32(C.AMFProp_Decode(&prop, (*byte)(unsafe.Pointer(pBuffer)), // nRes = int32(C.AMFProp_Decode(&prop, (*byte)(unsafe.Pointer(pBuffer)),
// int32(nSize), int32(bDecodeName))) // int32(nSize), int32(bDecodeName)))
if nRes == -1 { if nRes == -1 {
bError = 1
break
} else {
nSize -= nRes
if nSize < 0 {
bError = 1
break
}
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), int(nRes)))
C_AMF_AddProp(obj, &prop)
}
}
if bError != 0 {
return -1 return -1
} }
data = data[nRes:]
return nOriginalSize - nSize obj.o_props = append(obj.o_props, prop)
} }
// void AMF_AddProp(AMFObject* obj, const AMFObjectProperty* prop); return int32(nOriginalSize - len(data))
// amf.c + 1234
func C_AMF_AddProp(obj *C_AMFObject, prop *C_AMFObjectProperty) {
if (obj.o_num & 0x0f) == 0 {
//obj.o_props = (*C_AMFObjectProperty)(realloc(unsafe.Pointer(obj.o_props),
//uint32(int(obj.o_num+16)*int(unsafe.Sizeof(*obj.o_props)))))
obj.o_props = (*C_AMFObjectProperty)(C.realloc(unsafe.Pointer(obj.o_props),
C.size_t(int(obj.o_num+16)*int(unsafe.Sizeof(*obj.o_props)))))
}
memmove(unsafe.Pointer(&(*(*C_AMFObjectProperty)(incPtr(
unsafe.Pointer(obj.o_props), int(obj.o_num), int(unsafe.Sizeof(*obj.o_props)))))),
unsafe.Pointer(prop), unsafe.Sizeof(*obj.o_props))
obj.o_num++
} }
// AMFObjectProperty* AMF_GetProp(AMFObject *obj, const AVal* name, int nIndex); // AMFObjectProperty* AMF_GetProp(AMFObject *obj, const AVal* name, int nIndex);
// amf.c + 1249 // amf.c + 1249
func C_AMF_GetProp(obj *C_AMFObject, name string, nIndex int32) *C_AMFObjectProperty { func C_AMF_GetProp(obj *C_AMFObject, name string, idx int32) *C_AMFObjectProperty {
if nIndex >= 0 { if idx >= 0 {
if nIndex < int32(obj.o_num) { if idx < int32(len(obj.o_props)) {
return &(*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props), return &obj.o_props[idx]
int(nIndex), int(unsafe.Sizeof(*obj.o_props)))))
} }
} else { } else {
for n := int32(0); n < obj.o_num; n++ { for i, p := range obj.o_props {
p_name := (*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props), if p.p_name == name {
int(n), int(unsafe.Sizeof(*obj.o_props))))).p_name return &obj.o_props[i]
if p_name == name {
return &(*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props),
int(n), int(unsafe.Sizeof(*obj.o_props)))))
} }
} }
} }
return (*C_AMFObjectProperty)(&AMFProp_Invalid) return &AMFProp_Invalid
} }
// void AMF_Reset(AMFObject* obj); // void AMF_Reset(AMFObject* obj);
// amf.c +1282 // amf.c +1282
func C_AMF_Reset(obj *C_AMFObject) { func C_AMF_Reset(obj *C_AMFObject) {
var n int32 for i := range obj.o_props {
for n = 0; n < int32(obj.o_num); n++ { C_AMFProp_Reset(&obj.o_props[i])
C_AMFProp_Reset(&(*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props),
int(n), int(unsafe.Sizeof(*obj.o_props))))))
} }
//C.free(unsafe.Pointer(obj.o_props)) obj.o_props = obj.o_props[:0]
obj.o_props = nil
obj.o_num = 0
} }
/* /*

View File

@ -60,8 +60,7 @@ type C_AMFDataType int32
// typedef struct AMF_Object // typedef struct AMF_Object
// amf.h +67 // amf.h +67
type C_AMFObject struct { type C_AMFObject struct {
o_num int32 o_props []C_AMFObjectProperty
o_props *C_AMFObjectProperty
} }
// typedef struct P_vu // typedef struct P_vu

File diff suppressed because it is too large Load Diff

View File

@ -31,6 +31,8 @@ LICENSE
*/ */
package rtmp package rtmp
import "net"
const ( const (
RTMPT_OPEN = iota RTMPT_OPEN = iota
RTMPT_SEND RTMPT_SEND
@ -114,8 +116,7 @@ const (
// rtmp.h +105 // rtmp.h +105
type C_RTMPChunk struct { type C_RTMPChunk struct {
c_headerSize int32 c_headerSize int32
c_chunkSize int32 c_chunk []byte
c_chunk *byte
c_header [RTMP_MAX_HEADER_SIZE]byte c_header [RTMP_MAX_HEADER_SIZE]byte
} }
@ -124,24 +125,25 @@ type C_RTMPChunk struct {
type C_RTMPPacket struct { type C_RTMPPacket struct {
m_headerType uint8 m_headerType uint8
m_packetType uint8 m_packetType uint8
m_hasAbsTimestamp uint8 m_hasAbsTimestamp bool
m_nChannel int32 m_nChannel int32
m_nTimeStamp uint32 m_nTimeStamp uint32
m_nInfoField2 int32 m_nInfoField2 int32
m_nBodySize uint32 m_nBodySize uint32
m_nBytesRead uint32 m_nBytesRead uint32
m_chunk *C_RTMPChunk m_chunk *C_RTMPChunk
m_body *byte m_header []byte
m_body []byte
} }
// typedef struct RTMPSockBuf // typedef struct RTMPSockBuf
// rtmp.h +127 // rtmp.h +127
type C_RTMPSockBuf struct { type C_RTMPSockBuf struct {
sb_socket int32 conn *net.TCPConn
sb_size int32 sb_size int
sb_start *byte sb_start int
sb_buf [RTMP_BUFFER_CACHE_SIZE]byte // port const sb_buf [RTMP_BUFFER_CACHE_SIZE]byte // port const
sb_timedout int32 sb_timedout bool
} }
// RTMPPacket_IsReady(a) // RTMPPacket_IsReady(a)
@ -174,18 +176,6 @@ type C_RTMP_LNK struct {
port uint16 port uint16
} }
// typedef struct RTMP_READ
// rtmp.h +200
type C_RTMP_READ struct {
buf *byte
dataType uint8
flags uint8
status int8
nResumeTS uint32
nIgnoredFrameCounter uint32
nIgnoredFlvFrameCounter uint32
}
// typedef struct RTMPMethod // typedef struct RTMPMethod
// rtmp.h +231 // rtmp.h +231
type C_RTMP_METHOD struct { type C_RTMP_METHOD struct {
@ -209,16 +199,15 @@ type C_RTMP struct {
m_nClientBW int32 m_nClientBW int32
m_nClientBW2 uint8 m_nClientBW2 uint8
m_bPlaying bool m_bPlaying bool
m_bSendEncoding uint8 m_bSendEncoding bool
m_bSendCounter uint8 m_bSendCounter bool
m_numInvokes int32 m_numInvokes int32
m_numCalls int32 m_methodCalls []C_RTMP_METHOD
m_methodCalls *C_RTMP_METHOD
m_channelsAllocatedIn int32 m_channelsAllocatedIn int32
m_channelsAllocatedOut int32 m_channelsAllocatedOut int32
m_vecChannelsIn **C_RTMPPacket m_vecChannelsIn []*C_RTMPPacket
m_vecChannelsOut **C_RTMPPacket m_vecChannelsOut []*C_RTMPPacket
m_channelTimestamp *int32 m_channelTimestamp []int32
m_fAudioCodecs float64 m_fAudioCodecs float64
m_fVideoCodecs float64 m_fVideoCodecs float64
m_fEncoding float64 m_fEncoding float64
@ -226,7 +215,6 @@ type C_RTMP struct {
m_msgCounter int32 m_msgCounter int32
m_resplen int32 m_resplen int32
m_unackd int32 m_unackd int32
m_read C_RTMP_READ
m_write C_RTMPPacket m_write C_RTMPPacket
m_sb C_RTMPSockBuf m_sb C_RTMPSockBuf
Link C_RTMP_LNK Link C_RTMP_LNK

View File

@ -1,193 +0,0 @@
/*
NAME
rtmp_test.go
DESCRIPTION
See Readme.md
AUTHOR
Saxon Nelson-Milton <saxon@ausocean.org>
LICENSE
rtmp_test.go is Copyright (C) 2017 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with revid in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package rtmp
import (
"testing"
"unsafe"
)
const (
arrStart = 0
arrEnd = 5
arrSize = 6
inc = 3
dec = 3
)
const (
byteSize = 1
int32Size = 4
int64Size = 8
)
var (
byteArr = [arrSize]byte{0x01, 0x02, 0x03, 0x04, 0x05, 0x06}
int32Arr = [arrSize]int32{1, 2, 3, 4, 5, 6}
int64Arr = [arrSize]int64{1, 2, 3, 4, 5, 6}
errMsg = "Obtained: %v, but wanted: %v"
)
// TODO: write test for realloc
// TODO: write test for memmove
// TODO: write test for allocate
func TestMemcmp(t *testing.T) {
slice1 := []byte("ABCDEFG")
slice2 := []byte("ABCDEFG")
slice3 := []byte("ABCDJFG")
if memcmp(unsafe.Pointer(&slice1[0]), unsafe.Pointer(&slice2[0]), 7) != 0 {
t.Errorf("Should have got 0!")
}
if memcmp(unsafe.Pointer(&slice1[0]), unsafe.Pointer(&slice3[0]), 7) == 0 {
t.Errorf("Should not have got 0!")
}
}
func TestMemset(t *testing.T) {
size := 10
setNum := 5
testVal := byte('A')
mem := malloc(uintptr(size))
memset((*byte)(mem), testVal, setNum)
for i := 0; i < size; i++ {
if i > setNum-1 {
testVal = byte(0)
}
if (*[_Gi]byte)(mem)[i] != testVal {
t.Errorf("mem doesn't match expected values at: %v", i)
}
}
}
func TestGoStrToCStr(t *testing.T) {
goStr := "string\000"
bStr := goStrToCStr(goStr)
testData := []byte{'s', 't', 'r', 'i', 'n', 'g', '\000'}
for i := 0; i < len(goStr); i++ {
val := (*[_Gi]byte)(unsafe.Pointer(bStr))[i]
testVal := testData[i]
if val != testVal {
t.Errorf("Wanted: %v, but got: %v", testVal, val)
}
}
}
func TestStrdup(t *testing.T) {
goStr := "string\000"
bStr := goStrToCStr(goStr)
testData := []byte{'s', 't', 'r', 'i', 'n', 'g', '\000'}
newStr := strdup(bStr)
for i := 0; i < len(goStr); i++ {
val := (*[_Gi]byte)(unsafe.Pointer(newStr))[i]
testVal := testData[i]
if val != testVal {
t.Errorf("Wanted: %v, but got: %v", testVal, val)
}
}
}
func TestStrlen(t *testing.T) {
goStr := "string\000"
bStr := goStrToCStr(goStr)
eLength := 6
oLength := strlen(bStr)
if oLength != int32(eLength) {
t.Errorf("Wanted: %v, but got: %v", eLength, oLength)
}
}
func TestStrchr(t *testing.T) {
goStr := "string\000"
bStr := goStrToCStr(goStr)
// First try to find something that is in the string
ePtr := uintptr(incBytePtr(unsafe.Pointer(bStr), 2))
obtainedPtr := uintptr(unsafe.Pointer(strchr(bStr, 'r')))
if ePtr != obtainedPtr {
t.Errorf("wanted: %v, but got: %v", ePtr, obtainedPtr)
}
// Now try something that isn't actually in the string
obtainedPtr2 := strchr(bStr, 'k')
ePtr2 := (*byte)(nil)
if ePtr2 != obtainedPtr2 {
t.Errorf("wanted: %v, but got: %v", ePtr, obtainedPtr)
}
}
func TestIncPtr(t *testing.T) {
// Test how it deals with bytes
bytePtr := unsafe.Pointer(&byteArr[arrStart])
valueByte := *(*byte)(incPtr(bytePtr, inc, byteSize))
if valueByte != byteArr[inc] {
t.Errorf(errMsg, valueByte, byteArr[inc])
}
// Test how it deals with int32s
int32Ptr := unsafe.Pointer(&int32Arr[arrStart])
valueInt32 := *(*int32)(incPtr(int32Ptr, inc, int32Size))
if valueInt32 != int32Arr[inc] {
t.Errorf(errMsg, valueInt32, int32Arr[inc])
}
// Test how it deals with int64
int64Ptr := unsafe.Pointer(&int64Arr[arrStart])
valueInt64 := *(*int64)(incPtr(int64Ptr, inc, int64Size))
if valueInt64 != int64Arr[inc] {
t.Errorf(errMsg, valueInt64, int64Arr[inc])
}
}
func TestDecPtr(t *testing.T) {
// Test how it deals with bytes
bytePtr := unsafe.Pointer(&byteArr[arrEnd])
valueByte := *(*byte)(decPtr(bytePtr, dec, byteSize))
if valueByte != byteArr[arrEnd-dec] {
t.Errorf(errMsg, valueByte, byteArr[inc])
}
// Test how it deals with ints
int32Ptr := unsafe.Pointer(&int32Arr[arrEnd])
valueInt32 := *(*int32)(decPtr(int32Ptr, dec, int32Size))
if valueInt32 != int32Arr[arrEnd-inc] {
t.Errorf(errMsg, valueInt32, int32Arr[inc])
}
// Test how it deals with int64
int64Ptr := unsafe.Pointer(&int64Arr[arrEnd])
valueInt64 := *(*int64)(decPtr(int64Ptr, dec, int64Size))
if valueInt64 != int64Arr[arrEnd-dec] {
t.Errorf(errMsg, valueInt64, int64Arr[inc])
}
}

151
rtmp/socket.go Normal file
View File

@ -0,0 +1,151 @@
/*
NAME
rtmp.go
DESCRIPTION
See Readme.md
AUTHORS
Saxon Nelson-Milton <saxon@ausocean.org>
Dan Kortschak <dan@ausocean.org>
LICENSE
rtmp.go is Copyright (C) 2017 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with revid in gpl.txt. If not, see http://www.gnu.org/licenses.
Derived from librtmp under the GNU Lesser General Public License 2.1
Copyright (C) 2005-2008 Team XBMC http://www.xbmc.org
Copyright (C) 2008-2009 Andrej Stepanchuk
Copyright (C) 2009-2010 Howard Chu
*/
package rtmp
import (
"fmt"
"log"
"net"
"golang.org/x/sys/unix"
)
// int RTMP_Connect(RTMP *r, RTMPPacket* cp);
// rtmp.c +1032
func C_RTMP_Connect(r *C_RTMP, cp *C_RTMPPacket) (ok bool) {
if r.Link.hostname == "" {
return false
}
var hostname string
if r.Link.socksport != 0 {
hostname = fmt.Sprintf("%s:%d", r.Link.sockshost, r.Link.socksport)
} else {
hostname = fmt.Sprintf("%s:%d", r.Link.hostname, r.Link.port)
}
addr, err := net.ResolveTCPAddr("tcp4", hostname)
if err != nil {
return false
}
r.m_sb.conn, err = net.DialTCP("tcp4", nil, addr)
if err != nil {
return false
}
if r.Link.socksport != 0 {
if !C_SocksNegotiate(r, addr) {
return false
}
}
f, err := r.m_sb.conn.File()
if err != nil {
log.Printf("failed to get fd to set timeout: %v", err)
return false
}
tv := setTimeval(int(r.Link.timeout))
err = unix.SetsockoptTimeval(int(f.Fd()), unix.SOL_SOCKET, unix.SO_RCVTIMEO, &tv)
if err != nil {
log.Printf("failed to set timeout: %v", err)
}
r.m_bSendCounter = true
return C_RTMP_Connect1(r, cp)
}
// int SocksNegotiate(RTMP* r);
// rtmp.c +1062
func C_SocksNegotiate(r *C_RTMP, addr *net.TCPAddr) (ok bool) {
ip := addr.IP.To4()
packet := []byte{
0x4, // SOCKS version
0x1, // Establish a TCP/IP stream connection
byte(r.Link.port >> 8), byte(r.Link.port),
ip[0], ip[1], ip[2], ip[3],
0x0, // Empty user ID string
}
C_WriteN(r, packet)
if C_ReadN(r, packet[:8]) != 8 {
return false
}
if packet[0] == 0x0 && packet[1] == 0x5a {
return true
}
// TODO: use new logger here
log.Println("C_SocksNegotitate: SOCKS returned error code!")
return false
}
// int RTMPSockBuf_Fill(RTMPSockBuf* sb);
// rtmp.c +4253
func C_RTMPSockBuf_Fill(sb *C_RTMPSockBuf) int {
if sb.sb_size == 0 {
sb.sb_start = 0
}
n, err := sb.conn.Read(sb.sb_buf[sb.sb_start+sb.sb_size:])
if err != nil {
return 0
}
sb.sb_size += n
return n
}
// int RTMPSockBuf_Send(RTMPSockBuf* sb, const char* buf, int len);
// rtmp.c +4297
// TODO replace send with golang net connection send
func C_RTMPSockBuf_Send(sb *C_RTMPSockBuf, buf []byte) int32 {
n, err := sb.conn.Write(buf)
if err != nil {
return -1
}
return int32(n)
}
// int
// RTMPSockBuf_Close(RTMPSockBuf *sb)
// rtmp.c +4369
func C_RTMPSockBuf_Close(sb *C_RTMPSockBuf) int32 {
if sb.conn != nil {
err := sb.conn.Close()
sb.conn = nil
if err == nil {
return 1
}
}
return 0
}

7
rtmp/timeval_amd64.go Normal file
View File

@ -0,0 +1,7 @@
package rtmp
import "golang.org/x/sys/unix"
func setTimeval(sec int) unix.Timeval {
return unix.Timeval{Sec: int64(sec)}
}

7
rtmp/timeval_arm.go Normal file
View File

@ -0,0 +1,7 @@
package rtmp
import "golang.org/x/sys/unix"
func setTimeval(sec int) unix.Timeval {
return unix.Timeval{Sec: int32(sec)}
}