Merged in gardening/rtmp-safe-packets (pull request #59)

rtmp: make packet handling safer

Approved-by: Alan Noble <anoble@gmail.com>
This commit is contained in:
kortschak 2018-10-02 10:09:26 +00:00
commit 85b29ff9db
8 changed files with 780 additions and 1653 deletions

View File

@ -33,15 +33,10 @@ LICENSE
*/
package rtmp
/*
#include <stdlib.h>
*/
import "C"
import (
"encoding/binary"
"log"
"unsafe"
"math"
)
var (
@ -56,242 +51,182 @@ const (
// unsigned short AMF_DecodeInt16(const char* data);
// amf.c +41
func C_AMF_DecodeInt16(data *byte) uint16 {
c := unsafe.Pointer(data)
return uint16(*(*uint8)(c)<<8 | *(*byte)(incBytePtr(c, 1)))
func C_AMF_DecodeInt16(data []byte) uint16 {
return uint16(data[0])<<8 | uint16(data[1])
}
// unsigned int AMF_DecodeInt24(const char* data);
// amf.c +50
func C_AMF_DecodeInt24(data *byte) uint32 {
c := (*[3]byte)(unsafe.Pointer(data))
return (uint32(c[0]) << 16) | (uint32(c[1]) << 8) | uint32(c[2])
/*
// TODO Understand logic and simplify
c := (*uint8)(unsafe.Pointer(data))
dst := uint32(int32(*c) << 16)
dst |= uint32(int32(*((*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(c)) +
(uintptr)(int32(1))*unsafe.Sizeof(*c))))) << 8)
dst |= uint32(int32(*((*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(c)) +
(uintptr)(int32(2))*unsafe.Sizeof(*c))))))
return dst
*/
func C_AMF_DecodeInt24(data []byte) uint32 {
return uint32(data[0])<<16 | uint32(data[1])<<8 | uint32(data[2])
}
// unsigned int AMF_DeocdeInt32(const char* data);
// amf.c +59
func C_AMF_DecodeInt32(data *byte) uint32 {
c := (*uint8)(data)
val := uint32(
int32(*c)<<24 |
int32(*(*uint8)(incBytePtr(unsafe.Pointer(c), 1)))<<16 |
int32(*(*uint8)(incBytePtr(unsafe.Pointer(c), 2)))<<8 |
int32(*(*uint8)(incBytePtr(unsafe.Pointer(c), 3))))
return uint32(val)
func C_AMF_DecodeInt32(data []byte) uint32 {
return uint32(data[0])<<24 | uint32(data[1])<<16 | uint32(data[2])<<8 | uint32(data[3])
}
// void AMF_DecodeString(const char* data, C_AVal* bv);
// amf.c +68
func C_AMF_DecodeString(data *byte) string {
func C_AMF_DecodeString(data []byte) string {
n := C_AMF_DecodeInt16(data)
if n == 0 {
return ""
}
return string((*[_Gi]byte)(incBytePtr(unsafe.Pointer(data), 2))[:n])
return string(data[2 : 2+n])
}
// void AMF_DecodeLongString(const char *data, AVal *bv);
// amf.c +75
func C_AMF_DecodeLongString(data *byte) string {
func C_AMF_DecodeLongString(data []byte) string {
n := C_AMF_DecodeInt32(data)
if n == 0 {
return ""
}
return string((*[_Gi]byte)(incBytePtr(unsafe.Pointer(data), 4))[:n])
return string(data[2 : 2+n])
}
// double AMF_DecodeNumber(const char* data);
// amf.c +82
func C_AMF_DecodeNumber(data *byte) float64 {
var dVal float64
var ci, co *uint8
ci = (*uint8)(unsafe.Pointer(data))
co = (*uint8)(unsafe.Pointer(&dVal))
for i := 0; i < 8; i++ {
(*[_Gi]byte)(unsafe.Pointer(co))[i] = (*[_Gi]byte)(unsafe.Pointer(ci))[7-i]
}
return dVal
func C_AMF_DecodeNumber(data []byte) float64 {
return math.Float64frombits(binary.BigEndian.Uint64(data))
}
// int AMF_DecodeBoolean(const char *data);
// amf.c +132
func C_AMF_DecodeBoolean(data *byte) bool {
return *data != 0
}
// char* AMF_EncodeInt16(char* output, char* outend, short nVal);
// amf.c +138
func C_AMF_EncodeInt16(output *byte, outend *byte, nVal int16) *byte {
outputPtr := unsafe.Pointer(output)
outendPtr := unsafe.Pointer(outend)
if uintptr(outputPtr)+2 > uintptr(outendPtr) {
// length < 2
return nil
}
// Assign output[1]
second := (*byte)(incBytePtr(outputPtr, 1))
*second = (byte)(nVal & 0xff)
// Assign output[0]
*output = (byte)(nVal >> 8)
return (*byte)(incBytePtr(outputPtr, 2))
func C_AMF_DecodeBoolean(data []byte) bool {
return data[0] != 0
}
// char* AMF_EncodeInt24(char* output, char* outend, int nVal);
// amf.c +149
func C_AMF_EncodeInt24(output *byte, outend *byte, nVal int32) *byte {
outputPtr := unsafe.Pointer(output)
outendPtr := unsafe.Pointer(outend)
if uintptr(outputPtr)+3 > uintptr(outendPtr) {
// length < 3
func C_AMF_EncodeInt24(dst []byte, val int32) []byte {
if len(dst) < 3 {
return nil
}
// Assign output[2]
third := (*byte)(incBytePtr(outputPtr, 2))
*third = (byte)(nVal & 0xff)
// Assign output[1]
second := (*byte)(incBytePtr(outputPtr, 1))
*second = (byte)(nVal >> 8)
// Assign output[0]
*output = (byte)(nVal >> 16)
return (*byte)(incBytePtr(outputPtr, 3))
_ = dst[2]
dst[0] = byte(val >> 16)
dst[1] = byte(val >> 8)
dst[2] = byte(val)
if len(dst) == 3 {
return nil
}
return dst[3:]
}
// char* AMF_EncodeInt32(char* output, char* outend, int nVal);
// amf.c +161
func C_AMF_EncodeInt32(output *byte, outend *byte, nVal int32) *byte {
outputPtr := unsafe.Pointer(output)
outendPtr := unsafe.Pointer(outend)
if uintptr(outputPtr)+4 > uintptr(outendPtr) {
// length < 4
// amf.c +160
func C_AMF_EncodeInt32(dst []byte, val int32) []byte {
if len(dst) < 4 {
return nil
}
// Assign output[3]
forth := (*byte)(incBytePtr(outputPtr, 3))
*forth = (byte)(nVal & 0xff)
// Assign output[2]
third := (*byte)(incBytePtr(outputPtr, 2))
*third = (byte)(nVal >> 8)
// Assign output[1]
second := (*byte)(incBytePtr(outputPtr, 1))
*second = (byte)(nVal >> 16)
// Assign output[0]
*output = (byte)(nVal >> 24)
return (*byte)(incBytePtr(outputPtr, 4))
binary.BigEndian.PutUint32(dst, uint32(val))
if len(dst) == 4 {
return nil
}
return dst[4:]
}
// char* AMF_EncodeString(char* output, char* outend, const C_AVal* bv);
// amf.c +174
func C_AMF_EncodeString(output *byte, outend *byte, s string) *byte {
buflen := int(uintptr(unsafe.Pointer(outend)) - uintptr(unsafe.Pointer(output)))
if len(s) < 65536 && 1+2+len(s) > buflen {
// amf.c +173
func C_AMF_EncodeString(dst []byte, val string) []byte {
const typeSize = 1
if len(val) < 65536 && len(val)+typeSize+binary.Size(int16(0)) > len(dst) {
return nil
}
if 1+4+len(s) > buflen {
if len(val)+typeSize+binary.Size(int32(0)) > len(dst) {
return nil
}
outputPtr := unsafe.Pointer(output)
dst := (*[_Gi]byte)(unsafe.Pointer(output))[:buflen]
if len(s) < 65536 {
if len(val) < 65536 {
dst[0] = AMF_STRING
binary.BigEndian.PutUint16(dst[1:3], uint16(len(s)))
copy(dst[3:], s)
outputPtr = incBytePtr(outputPtr, 3+len(s))
} else {
dst[0] = AMF_LONG_STRING
binary.BigEndian.PutUint32(dst[1:5], uint32(len(s)))
copy(dst[5:], s)
outputPtr = incBytePtr(outputPtr, 5+len(s))
dst = dst[1:]
binary.BigEndian.PutUint16(dst[:2], uint16(len(val)))
dst = dst[2:]
copy(dst, val)
if len(dst) == len(val) {
return nil
}
return dst[len(val):]
}
return (*byte)(outputPtr)
dst[0] = AMF_LONG_STRING
dst = dst[1:]
binary.BigEndian.PutUint32(dst[:4], uint32(len(val)))
dst = dst[4:]
copy(dst, val)
if len(dst) == len(val) {
return nil
}
return dst[len(val):]
}
// char* AMF_EncodeNumber(char* output, char* outend, double dVal);
// amf.c +199
func C_AMF_EncodeNumber(output *byte, outend *byte, dVal float64) *byte {
if int(uintptr(unsafe.Pointer(output)))+1+8 > int(uintptr(unsafe.Pointer(outend))) {
func C_AMF_EncodeNumber(dst []byte, val float64) []byte {
if len(dst) < 9 {
return nil
}
// TODO: port this
*(*byte)(unsafe.Pointer(output)) = AMF_NUMBER
output = (*byte)(incBytePtr(unsafe.Pointer(output), 1))
// NOTE: here we are assuming little endian for both byte order and float
// word order
var ci, co *uint8
ci = (*uint8)(unsafe.Pointer(&dVal))
co = (*uint8)(unsafe.Pointer(output))
for i := 0; i < 8; i++ {
(*[_Gi]byte)(unsafe.Pointer(co))[i] = (*[_Gi]byte)(unsafe.Pointer(ci))[7-i]
}
return (*byte)(incBytePtr(unsafe.Pointer(output), 8))
dst[0] = AMF_NUMBER
dst = dst[1:]
binary.BigEndian.PutUint64(dst, math.Float64bits(val))
return dst[8:]
}
// char* AMF_EncodeBoolean(char* output, char* outend, int bVal);
// amf.c +260
func C_AMF_EncodeBoolean(output *byte, outend *byte, bVal bool) *byte {
if int(uintptr(unsafe.Pointer(output)))+2 > int(uintptr(unsafe.Pointer(outend))) {
func C_AMF_EncodeBoolean(dst []byte, val bool) []byte {
if len(dst) < 2 {
return nil
}
*(*byte)(unsafe.Pointer(output)) = AMF_BOOLEAN
output = (*byte)(incBytePtr(unsafe.Pointer(output), 1))
var val byte
if bVal {
val = 1
dst[0] = AMF_BOOLEAN
if val {
dst[1] = 1
}
*(*byte)(unsafe.Pointer(output)) = val
output = (*byte)(incBytePtr(unsafe.Pointer(output), 1))
return output
if len(dst) == 2 {
return nil
}
return dst[2:]
}
// char* AMF_EncodeNamedString(char* output, char* outend, const C_AVal* strName, const C_AVal* strValue);
// amf.c +273
func C_AMF_EncodeNamedString(output *byte, outend *byte, key, val string) *byte {
buflen := int(uintptr(unsafe.Pointer(outend)) - uintptr(unsafe.Pointer(output)))
if 2+len(key) > buflen {
func C_AMF_EncodeNamedString(dst []byte, key, val string) []byte {
if 2+len(key) > len(dst) {
return nil
}
dst := (*[_Gi]byte)(unsafe.Pointer(output))[:buflen]
binary.BigEndian.PutUint16(dst[:2], uint16(len(key)))
copy(dst[2:], key)
output = (*byte)(incBytePtr(unsafe.Pointer(output), 2+len(key)))
return C_AMF_EncodeString(output, outend, val)
dst = dst[2:]
copy(dst, key)
if len(key) == len(dst) {
return nil
}
return C_AMF_EncodeString(dst[len(key):], val)
}
// char* AMF_EncodeNamedNumber(char* output, char* outend, const C_AVal* strName, double dVal);
// amf.c +286
func C_AMF_EncodeNamedNumber(output *byte, outend *byte, key string, val float64) *byte {
buflen := int(uintptr(unsafe.Pointer(outend)) - uintptr(unsafe.Pointer(output)))
if 2+len(key) > buflen {
func C_AMF_EncodeNamedNumber(dst []byte, key string, val float64) []byte {
if 2+len(key) > len(dst) {
return nil
}
dst := (*[_Gi]byte)(unsafe.Pointer(output))[:buflen]
binary.BigEndian.PutUint16(dst[:2], uint16(len(key)))
copy(dst[2:], key)
output = (*byte)(incBytePtr(unsafe.Pointer(output), 2+len(key)))
return C_AMF_EncodeNumber(output, outend, val)
dst = dst[2:]
copy(dst, key)
if len(key) == len(dst) {
return nil
}
return C_AMF_EncodeNumber(dst[len(key):], val)
}
// char* AMF_EncodeNamedBoolean(char* output, char* outend, const C_AVal* strname, int bVal);
// amf.c +299
func C_AMF_EncodeNamedBoolean(output *byte, outend *byte, key string, val bool) *byte {
buflen := int(uintptr(unsafe.Pointer(outend)) - uintptr(unsafe.Pointer(output)))
if 2+len(key) > buflen {
func C_AMF_EncodeNamedBoolean(dst []byte, key string, val bool) []byte {
if 2+len(key) > len(dst) {
return nil
}
dst := (*[_Gi]byte)(unsafe.Pointer(output))[:buflen]
binary.BigEndian.PutUint16(dst[:2], uint16(len(key)))
copy(dst[2:], key)
output = (*byte)(incBytePtr(unsafe.Pointer(output), 2+len(key)))
return C_AMF_EncodeBoolean(output, outend, val)
dst = dst[2:]
copy(dst, key)
if len(key) == len(dst) {
return nil
}
return C_AMF_EncodeBoolean(dst[len(key):], val)
}
// void AMFProp_SetName(AMFObjectProperty *prop, AVal *name);
@ -303,7 +238,7 @@ func C_AMFProp_SetName(prop *C_AMFObjectProperty, name string) {
// double AMFProp_GetNumber(AMFObjectProperty* prop);
// amf.c +330
func C_AMFProp_GetNumber(prop *C_AMFObjectProperty) float64 {
return float64(prop.p_vu.p_number)
return prop.p_vu.p_number
}
// void AMFProp_GetString(AMFObjectProperty* prop, AVal* str);
@ -327,140 +262,61 @@ func C_AMFProp_GetObject(prop *C_AMFObjectProperty, obj *C_AMFObject) {
// char* AMFPropEncode(AMFOBjectProperty* prop, char* pBufer, char* pBufEnd);
// amf.c +366
func C_AMF_PropEncode(p *C_AMFObjectProperty, pBuffer *byte, pBufEnd *byte) *byte {
func C_AMF_PropEncode(p *C_AMFObjectProperty, dst []byte) []byte {
if p.p_type == AMF_INVALID {
return nil
}
buflen := int(uintptr(unsafe.Pointer(pBufEnd)) - uintptr(unsafe.Pointer(pBuffer)))
if p.p_type != AMF_NULL && len(p.p_name)+2+1 >= buflen {
if p.p_type != AMF_NULL && len(p.p_name)+2+1 >= len(dst) {
return nil
}
if p.p_type != AMF_NULL && len(p.p_name) != 0 {
(*[_Gi]byte)(unsafe.Pointer(pBuffer))[0] = byte(len(p.p_name) >> 8)
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
(*[_Gi]byte)(unsafe.Pointer(pBuffer))[0] = byte(len(p.p_name) & 0xff)
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
copy((*[_Gi]byte)(unsafe.Pointer(pBuffer))[:], p.p_name)
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), len(p.p_name)))
binary.BigEndian.PutUint16(dst[:2], uint16(len(p.p_name)))
dst = dst[2:]
copy(dst, p.p_name)
dst = dst[len(p.p_name):]
}
switch p.p_type {
case AMF_NUMBER:
pBuffer = C_AMF_EncodeNumber(pBuffer, pBufEnd, float64(p.p_vu.p_number))
dst = C_AMF_EncodeNumber(dst, p.p_vu.p_number)
case AMF_BOOLEAN:
pBuffer = C_AMF_EncodeBoolean(pBuffer, pBufEnd, p.p_vu.p_number != 0)
dst = C_AMF_EncodeBoolean(dst, p.p_vu.p_number != 0)
case AMF_STRING:
pBuffer = C_AMF_EncodeString(pBuffer, pBufEnd, p.p_vu.p_aval)
dst = C_AMF_EncodeString(dst, p.p_vu.p_aval)
case AMF_NULL:
buflen = int(uintptr(unsafe.Pointer(pBufEnd)) - uintptr(unsafe.Pointer(pBuffer)))
if 1 >= buflen {
if len(dst) < 2 {
return nil
}
*(*byte)(unsafe.Pointer(pBuffer)) = AMF_NULL
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
dst[0] = AMF_NULL
dst = dst[1:]
case AMF_OBJECT:
pBuffer = C_AMF_Encode(&p.p_vu.p_object, pBuffer, pBufEnd)
//pBuffer = (*byte)(unsafe.Pointer(C.AMF_Encode(&p.p_vu.p_object, (*byte)(
//unsafe.Pointer(pBuffer)), (*byte)(unsafe.Pointer(pBufEnd)))))
dst = C_AMF_Encode(&p.p_vu.p_object, dst)
case AMF_ECMA_ARRAY:
pBuffer = C_AMF_EncodeEcmaArray(&p.p_vu.p_object, pBuffer, pBufEnd)
//pBuffer = (*byte)(unsafe.Pointer(C.AMF_EncodeEcmaArray(&p.p_vu.p_object, (*byte)(unsafe.Pointer(pBuffer)), (*byte)(unsafe.Pointer(pBufEnd)))))
dst = C_AMF_EncodeEcmaArray(&p.p_vu.p_object, dst)
case AMF_STRICT_ARRAY:
//pBuffer = (*byte)(unsafe.Pointer(C.AMF_EncodeArray(&p.p_vu.p_object, (*byte)(unsafe.Pointer(pBuffer)), (*byte)(unsafe.Pointer(pBufEnd)))))
pBuffer = C_AMF_EncodeArray(&p.p_vu.p_object, pBuffer, pBufEnd)
dst = C_AMF_EncodeArray(&p.p_vu.p_object, dst)
default:
log.Println("C_AMF_PropEncode: invalid type!")
pBuffer = nil
dst = nil
}
return pBuffer
}
// int AMF3ReadInteger(const char *data, int32_t *valp);
// amf.c +426
// TODO test
func C_AMF3ReadInteger(data *byte, valp *int32) int32 {
var i int
var val int32
for i <= 2 {
/* handle first 3 bytes */
if (*[_Gi]byte)(unsafe.Pointer(data))[i]&0x80 != 0 {
/* byte used */
val <<= 7 /* shift up */
val |= int32((*[_Gi]byte)(unsafe.Pointer(data))[i] & 0x7f) /* add bits */
i++
} else {
break
}
}
if i > 2 {
/* use 4th byte, all 8bits */
val <<= 8
val |= int32((*[_Gi]byte)(unsafe.Pointer(data))[3])
/* range check */
if val > AMF3_INTEGER_MAX {
val -= (1 << 29)
}
} else {
/* use 7bits of last unparsed byte (0xxxxxxx) */
val <<= 7
val |= int32((*[_Gi]byte)(unsafe.Pointer(data))[i])
}
*valp = val
if i > 2 {
return 4
}
return int32(i + 1)
}
// int AMF3ReadString(const char *data, AVal *str);
// amf.c +466
func C_AMF3ReadString(data *byte, str *string) int32 {
var ref int32
// assert elided - we will get a panic if it's nil.
len := C_AMF3ReadInteger(data, &ref)
data = (*byte)(sliceToPtr((*[_Gi]byte)(unsafe.Pointer(data))[len:]))
if ref&0x1 == 0 {
/* reference: 0xxx */
// TODO(kortschak) Logging.
// refIndex := (ref >> 1)
// RTMP_Log(RTMP_LOGDEBUG,
// "%s, string reference, index: %d, not supported, ignoring!",
// __FUNCTION__, refIndex);
*str = ""
return len
} else {
nSize := (ref >> 1)
*str = string((*[_Gi]byte)(unsafe.Pointer(data))[:nSize])
return len + nSize
}
return len
return dst
}
// int AMFProp_Decode(C_AMFObjectProperty* prop, const char* pBuffer, int nSize, int bDecodeName);
// amf.c +619
func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeName int32) int32 {
var nOriginalSize int32 = nSize
var nRes int32
func C_AMFProp_Decode(prop *C_AMFObjectProperty, data []byte, bDecodeName int32) int32 {
prop.p_name = ""
if nSize == 0 || pBuffer == nil {
nOriginalSize := len(data)
if len(data) == 0 {
// TODO use new logger here
// RTMP_Log(RTMP_LOGDEBUG, "%s: Empty buffer/no buffer pointer!", __FUNCTION__);
return -1
}
if bDecodeName != 0 && nSize < 4 {
if bDecodeName != 0 && len(data) < 4 {
// at least name (length + at least 1 byte) and 1 byte of data
// TODO use new logger here
// RTMP_Log(RTMP_LOGDEBUG, "%s: Not enough data for decoding with name, less than 4 bytes!",__FUNCTION__);
@ -468,53 +324,50 @@ func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeNa
}
if bDecodeName != 0 {
nNameSize := C_AMF_DecodeInt16(pBuffer)
if int32(nNameSize) > nSize-2 {
nNameSize := C_AMF_DecodeInt16(data[:2])
if int(nNameSize) > len(data)-2 {
// TODO use new logger here
//RTMP_Log(RTMP_LOGDEBUG, "%s: Name size out of range: namesize (%d) > len (%d) - 2",__FUNCTION__, nNameSize, nSize);
return -1
}
prop.p_name = C_AMF_DecodeString(pBuffer)
nSize -= int32(2 + nNameSize)
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), int(2+nNameSize)))
prop.p_name = C_AMF_DecodeString(data)
data = data[2+nNameSize:]
}
if nSize == 0 {
if len(data) == 0 {
return -1
}
nSize--
prop.p_type = (C_AMFDataType)(int32(*pBuffer))
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
prop.p_type = C_AMFDataType(data[0])
data = data[1:]
var nRes int32
switch prop.p_type {
case AMF_NUMBER:
if nSize < 8 {
if len(data) < 8 {
return -1
}
prop.p_vu.p_number = float64(C_AMF_DecodeNumber(pBuffer))
nSize -= 8
prop.p_vu.p_number = C_AMF_DecodeNumber(data[:8])
data = data[8:]
case AMF_BOOLEAN:
panic("AMF_BOOLEAN not supported")
case AMF_STRING:
var nStringSize = C_AMF_DecodeInt16(pBuffer)
if int64(nSize) < int64(nStringSize)+2 {
nStringSize := C_AMF_DecodeInt16(data[:2])
if len(data) < int(nStringSize+2) {
return -1
}
prop.p_vu.p_aval = C_AMF_DecodeString(pBuffer)
nSize -= int32(2 + nStringSize)
prop.p_vu.p_aval = C_AMF_DecodeString(data)
data = data[2+nStringSize:]
case AMF_OBJECT:
var nRes int32 = int32(C_AMF_Decode(&prop.p_vu.p_object, pBuffer, nSize, 1))
nRes := C_AMF_Decode(&prop.p_vu.p_object, data, 1)
if nRes == -1 {
return -1
}
nSize -= nRes
data = data[nRes:]
case AMF_MOVIECLIP:
// TODO use new logger here
@ -526,26 +379,21 @@ func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeNa
prop.p_type = AMF_NULL
case AMF_REFERENCE:
// TODO use new logger here
log.Println("AMFProp_Decode: AMF_REFERENCE not supported!")
//RTMP_Log(RTMP_LOGERROR, "AMF_REFERENCE not supported!");
return -1
case AMF_ECMA_ARRAY:
nSize -= 4
// next comes the rest, mixed array has a final 0x000009 mark and names, so its an object
nRes = C_AMF_Decode(&prop.p_vu.p_object, (*byte)(incBytePtr(
unsafe.Pointer(pBuffer), 4)), nSize, 1)
data = data[4:]
nRes = C_AMF_Decode(&prop.p_vu.p_object, data, 1)
if nRes == -1 {
return -1
}
nSize -= nRes
data = data[nRes:]
case AMF_OBJECT_END:
return -1
case AMF_STRICT_ARRAY:
@ -564,7 +412,6 @@ func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeNa
return -1
case AMF_TYPED_OBJECT:
// TODO use new logger here
// RTMP_Log(RTMP_LOGERROR, "AMF_TYPED_OBJECT not supported!")
return -1
@ -579,7 +426,7 @@ func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeNa
return -1
}
return nOriginalSize - nSize
return int32(nOriginalSize - len(data))
}
// void AMFProp_Reset(AMFObjectProperty* prop);
@ -596,225 +443,127 @@ func C_AMFProp_Reset(prop *C_AMFObjectProperty) {
// char* AMF_Encode(AMFObject* obj, char* pBuffer, char* pBufEnd);
// amf.c +891
func C_AMF_Encode(obj *C_AMFObject, pBuffer *byte, pBufEnd *byte) *byte {
if uintptr(unsafe.Pointer(pBuffer))+uintptr(4) >= uintptr(unsafe.Pointer(pBufEnd)) {
func C_AMF_Encode(obj *C_AMFObject, dst []byte) []byte {
if len(dst) < 5 {
return nil
}
*pBuffer = AMF_OBJECT
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
dst[0] = AMF_OBJECT
dst = dst[1:]
for i := 0; i < int(obj.o_num); i++ {
res := C_AMF_PropEncode((*C_AMFObjectProperty)(incPtr(unsafe.Pointer(
obj.o_props), i, int(unsafe.Sizeof(*obj.o_props)))), pBuffer, pBufEnd)
if res == nil {
for i := 0; i < len(obj.o_props); i++ {
dst = C_AMF_PropEncode(&obj.o_props[i], dst)
if dst == nil {
log.Println("C_AMF_Encode: failed to encode property in index")
break
} else {
pBuffer = res
}
}
if uintptr(incBytePtr(unsafe.Pointer(pBuffer), 3)) >= uintptr(unsafe.Pointer(pBufEnd)) {
if len(dst) < 4 {
return nil
}
pBuffer = C_AMF_EncodeInt24(pBuffer, pBufEnd, int32(AMF_OBJECT_END))
return pBuffer
return C_AMF_EncodeInt24(dst, AMF_OBJECT_END)
}
// char* AMF_EncodeEcmaArray(AMFObject* obj, char* pBuffer, char* pBufEnd);
// amf.c +924
func C_AMF_EncodeEcmaArray(obj *C_AMFObject, pBuffer *byte, pBufEnd *byte) *byte {
if int(uintptr(unsafe.Pointer(pBuffer)))+4 >= int(uintptr(unsafe.Pointer(pBufEnd))) {
func C_AMF_EncodeEcmaArray(obj *C_AMFObject, dst []byte) []byte {
if len(dst) < 5 {
return nil
}
*pBuffer = AMF_ECMA_ARRAY
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
dst[0] = AMF_ECMA_ARRAY
dst = dst[1:]
binary.BigEndian.PutUint32(dst[:4], uint32(len(obj.o_props)))
dst = dst[4:]
pBuffer = C_AMF_EncodeInt32(pBuffer, pBufEnd, int32(obj.o_num))
for i := 0; i < int(obj.o_num); i++ {
res := C_AMF_PropEncode((*C_AMFObjectProperty)(incPtr(unsafe.Pointer(
obj.o_props), i, int(unsafe.Sizeof(*obj.o_props)))), pBuffer, pBufEnd)
if res == nil {
for i := 0; i < len(obj.o_props); i++ {
dst = C_AMF_PropEncode(&obj.o_props[i], dst)
if dst == nil {
log.Println("C_AMF_EncodeEcmaArray: failed to encode property!")
break
} else {
pBuffer = res
}
}
if int(uintptr(unsafe.Pointer(pBuffer)))+3 >= int(uintptr(unsafe.Pointer(pBufEnd))) {
if len(dst) < 4 {
return nil
}
pBuffer = C_AMF_EncodeInt24(pBuffer, pBufEnd, AMF_OBJECT_END)
return pBuffer
return C_AMF_EncodeInt24(dst, AMF_OBJECT_END)
}
// char* AMF_EncodeArray(AMFObject* obj, char* pBuffer, char* pBufEnd);
// amf.c +959
func C_AMF_EncodeArray(obj *C_AMFObject, pBuffer *byte, pBufEnd *byte) *byte {
if int(uintptr(unsafe.Pointer(pBuffer)))+4 >= int(uintptr(unsafe.Pointer(pBufEnd))) {
func C_AMF_EncodeArray(obj *C_AMFObject, dst []byte) []byte {
if len(dst) < 5 {
return nil
}
*pBuffer = AMF_STRICT_ARRAY
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
dst[0] = AMF_STRICT_ARRAY
dst = dst[1:]
binary.BigEndian.PutUint32(dst[:4], uint32(len(obj.o_props)))
dst = dst[4:]
pBuffer = C_AMF_EncodeInt32(pBuffer, pBufEnd, int32(obj.o_num))
for i := 0; i < int(obj.o_num); i++ {
res := C_AMF_PropEncode((*C_AMFObjectProperty)(incPtr(unsafe.Pointer(
obj.o_props), i, int(unsafe.Sizeof(*obj.o_props)))), pBuffer, pBufEnd)
if res == nil {
log.Println("C_AMF_EncodeEcmaArray: failed to encode property!")
for i := 0; i < len(obj.o_props); i++ {
dst = C_AMF_PropEncode(&obj.o_props[i], dst)
if dst == nil {
log.Println("C_AMF_EncodeArray: failed to encode property!")
break
} else {
pBuffer = res
}
}
return pBuffer
}
// int AMF_DecodeArray(AMFObject *obj, const char *pBuffer, int nSize, int nArrayLen, int bDecodeName);
// amf.c +993
func C_AMF_DecodeArray(obj *C_AMFObject, pBuffer *byte, nSize, nArrayLen, bDecodeName int32) int32 {
nOriginalSize := nSize
var bError int32 = 0
obj.o_num = 0
obj.o_props = nil
for nArrayLen > 0 {
var prop C_AMFObjectProperty
var nRes int32
nArrayLen--
if nSize <= 0 {
bError = 1
break
}
nRes = C_AMFProp_Decode(&prop, pBuffer, nSize, bDecodeName)
if nRes == -1 {
bError = 1
break
} else {
nSize -= nRes
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), int(nRes)))
C_AMF_AddProp(obj, &prop)
}
}
if bError != 0 {
return -1
}
return nOriginalSize - nSize
return dst
}
// int AMF_Decode(AMFObject *obj, const char* pBuffer, int nSize, int bDecodeName);
// amf.c +1180
func C_AMF_Decode(obj *C_AMFObject, pBuffer *byte, nSize int32, bDecodeName int32) int32 {
var nOriginalSize int32 = nSize
var bError int32 = 0
func C_AMF_Decode(obj *C_AMFObject, data []byte, bDecodeName int32) int32 {
nOriginalSize := len(data)
obj.o_num = 0
obj.o_props = nil
for nSize > 0 {
var prop C_AMFObjectProperty
var nRes int32
if nSize >= 3 && C_AMF_DecodeInt24(pBuffer) == AMF_OBJECT_END {
nSize -= 3
bError = 0
obj.o_props = obj.o_props[:0]
for len(data) != 0 {
if len(data) >= 3 && C_AMF_DecodeInt24(data[:3]) == AMF_OBJECT_END {
data = data[3:]
break
}
if bError != 0 {
// TODO use new logger here
log.Println("AMF_Decode: decoding error, ignoring bytes until next known pattern!")
nSize--
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
continue
}
// TODO port AMFProp_Decode
nRes = int32(C_AMFProp_Decode(&prop, (*byte)(unsafe.Pointer(pBuffer)),
int32(nSize), int32(bDecodeName)))
var prop C_AMFObjectProperty
nRes := C_AMFProp_Decode(&prop, data, bDecodeName)
// nRes = int32(C.AMFProp_Decode(&prop, (*byte)(unsafe.Pointer(pBuffer)),
// int32(nSize), int32(bDecodeName)))
if nRes == -1 {
bError = 1
break
} else {
nSize -= nRes
if nSize < 0 {
bError = 1
break
}
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), int(nRes)))
C_AMF_AddProp(obj, &prop)
return -1
}
data = data[nRes:]
obj.o_props = append(obj.o_props, prop)
}
if bError != 0 {
return -1
}
return nOriginalSize - nSize
}
// void AMF_AddProp(AMFObject* obj, const AMFObjectProperty* prop);
// amf.c + 1234
func C_AMF_AddProp(obj *C_AMFObject, prop *C_AMFObjectProperty) {
if (obj.o_num & 0x0f) == 0 {
//obj.o_props = (*C_AMFObjectProperty)(realloc(unsafe.Pointer(obj.o_props),
//uint32(int(obj.o_num+16)*int(unsafe.Sizeof(*obj.o_props)))))
obj.o_props = (*C_AMFObjectProperty)(C.realloc(unsafe.Pointer(obj.o_props),
C.size_t(int(obj.o_num+16)*int(unsafe.Sizeof(*obj.o_props)))))
}
memmove(unsafe.Pointer(&(*(*C_AMFObjectProperty)(incPtr(
unsafe.Pointer(obj.o_props), int(obj.o_num), int(unsafe.Sizeof(*obj.o_props)))))),
unsafe.Pointer(prop), unsafe.Sizeof(*obj.o_props))
obj.o_num++
return int32(nOriginalSize - len(data))
}
// AMFObjectProperty* AMF_GetProp(AMFObject *obj, const AVal* name, int nIndex);
// amf.c + 1249
func C_AMF_GetProp(obj *C_AMFObject, name string, nIndex int32) *C_AMFObjectProperty {
if nIndex >= 0 {
if nIndex < int32(obj.o_num) {
return &(*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props),
int(nIndex), int(unsafe.Sizeof(*obj.o_props)))))
func C_AMF_GetProp(obj *C_AMFObject, name string, idx int32) *C_AMFObjectProperty {
if idx >= 0 {
if idx < int32(len(obj.o_props)) {
return &obj.o_props[idx]
}
} else {
for n := int32(0); n < obj.o_num; n++ {
p_name := (*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props),
int(n), int(unsafe.Sizeof(*obj.o_props))))).p_name
if p_name == name {
return &(*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props),
int(n), int(unsafe.Sizeof(*obj.o_props)))))
for i, p := range obj.o_props {
if p.p_name == name {
return &obj.o_props[i]
}
}
}
return (*C_AMFObjectProperty)(&AMFProp_Invalid)
return &AMFProp_Invalid
}
// void AMF_Reset(AMFObject* obj);
// amf.c +1282
func C_AMF_Reset(obj *C_AMFObject) {
var n int32
for n = 0; n < int32(obj.o_num); n++ {
C_AMFProp_Reset(&(*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props),
int(n), int(unsafe.Sizeof(*obj.o_props))))))
for i := range obj.o_props {
C_AMFProp_Reset(&obj.o_props[i])
}
//C.free(unsafe.Pointer(obj.o_props))
obj.o_props = nil
obj.o_num = 0
obj.o_props = obj.o_props[:0]
}
/*

View File

@ -60,8 +60,7 @@ type C_AMFDataType int32
// typedef struct AMF_Object
// amf.h +67
type C_AMFObject struct {
o_num int32
o_props *C_AMFObjectProperty
o_props []C_AMFObjectProperty
}
// typedef struct P_vu

File diff suppressed because it is too large Load Diff

View File

@ -31,6 +31,8 @@ LICENSE
*/
package rtmp
import "net"
const (
RTMPT_OPEN = iota
RTMPT_SEND
@ -114,8 +116,7 @@ const (
// rtmp.h +105
type C_RTMPChunk struct {
c_headerSize int32
c_chunkSize int32
c_chunk *byte
c_chunk []byte
c_header [RTMP_MAX_HEADER_SIZE]byte
}
@ -124,24 +125,25 @@ type C_RTMPChunk struct {
type C_RTMPPacket struct {
m_headerType uint8
m_packetType uint8
m_hasAbsTimestamp uint8
m_hasAbsTimestamp bool
m_nChannel int32
m_nTimeStamp uint32
m_nInfoField2 int32
m_nBodySize uint32
m_nBytesRead uint32
m_chunk *C_RTMPChunk
m_body *byte
m_header []byte
m_body []byte
}
// typedef struct RTMPSockBuf
// rtmp.h +127
type C_RTMPSockBuf struct {
sb_socket int32
sb_size int32
sb_start *byte
conn *net.TCPConn
sb_size int
sb_start int
sb_buf [RTMP_BUFFER_CACHE_SIZE]byte // port const
sb_timedout int32
sb_timedout bool
}
// RTMPPacket_IsReady(a)
@ -174,18 +176,6 @@ type C_RTMP_LNK struct {
port uint16
}
// typedef struct RTMP_READ
// rtmp.h +200
type C_RTMP_READ struct {
buf *byte
dataType uint8
flags uint8
status int8
nResumeTS uint32
nIgnoredFrameCounter uint32
nIgnoredFlvFrameCounter uint32
}
// typedef struct RTMPMethod
// rtmp.h +231
type C_RTMP_METHOD struct {
@ -209,16 +199,15 @@ type C_RTMP struct {
m_nClientBW int32
m_nClientBW2 uint8
m_bPlaying bool
m_bSendEncoding uint8
m_bSendCounter uint8
m_bSendEncoding bool
m_bSendCounter bool
m_numInvokes int32
m_numCalls int32
m_methodCalls *C_RTMP_METHOD
m_methodCalls []C_RTMP_METHOD
m_channelsAllocatedIn int32
m_channelsAllocatedOut int32
m_vecChannelsIn **C_RTMPPacket
m_vecChannelsOut **C_RTMPPacket
m_channelTimestamp *int32
m_vecChannelsIn []*C_RTMPPacket
m_vecChannelsOut []*C_RTMPPacket
m_channelTimestamp []int32
m_fAudioCodecs float64
m_fVideoCodecs float64
m_fEncoding float64
@ -226,7 +215,6 @@ type C_RTMP struct {
m_msgCounter int32
m_resplen int32
m_unackd int32
m_read C_RTMP_READ
m_write C_RTMPPacket
m_sb C_RTMPSockBuf
Link C_RTMP_LNK

View File

@ -1,193 +0,0 @@
/*
NAME
rtmp_test.go
DESCRIPTION
See Readme.md
AUTHOR
Saxon Nelson-Milton <saxon@ausocean.org>
LICENSE
rtmp_test.go is Copyright (C) 2017 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with revid in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package rtmp
import (
"testing"
"unsafe"
)
const (
arrStart = 0
arrEnd = 5
arrSize = 6
inc = 3
dec = 3
)
const (
byteSize = 1
int32Size = 4
int64Size = 8
)
var (
byteArr = [arrSize]byte{0x01, 0x02, 0x03, 0x04, 0x05, 0x06}
int32Arr = [arrSize]int32{1, 2, 3, 4, 5, 6}
int64Arr = [arrSize]int64{1, 2, 3, 4, 5, 6}
errMsg = "Obtained: %v, but wanted: %v"
)
// TODO: write test for realloc
// TODO: write test for memmove
// TODO: write test for allocate
func TestMemcmp(t *testing.T) {
slice1 := []byte("ABCDEFG")
slice2 := []byte("ABCDEFG")
slice3 := []byte("ABCDJFG")
if memcmp(unsafe.Pointer(&slice1[0]), unsafe.Pointer(&slice2[0]), 7) != 0 {
t.Errorf("Should have got 0!")
}
if memcmp(unsafe.Pointer(&slice1[0]), unsafe.Pointer(&slice3[0]), 7) == 0 {
t.Errorf("Should not have got 0!")
}
}
func TestMemset(t *testing.T) {
size := 10
setNum := 5
testVal := byte('A')
mem := malloc(uintptr(size))
memset((*byte)(mem), testVal, setNum)
for i := 0; i < size; i++ {
if i > setNum-1 {
testVal = byte(0)
}
if (*[_Gi]byte)(mem)[i] != testVal {
t.Errorf("mem doesn't match expected values at: %v", i)
}
}
}
func TestGoStrToCStr(t *testing.T) {
goStr := "string\000"
bStr := goStrToCStr(goStr)
testData := []byte{'s', 't', 'r', 'i', 'n', 'g', '\000'}
for i := 0; i < len(goStr); i++ {
val := (*[_Gi]byte)(unsafe.Pointer(bStr))[i]
testVal := testData[i]
if val != testVal {
t.Errorf("Wanted: %v, but got: %v", testVal, val)
}
}
}
func TestStrdup(t *testing.T) {
goStr := "string\000"
bStr := goStrToCStr(goStr)
testData := []byte{'s', 't', 'r', 'i', 'n', 'g', '\000'}
newStr := strdup(bStr)
for i := 0; i < len(goStr); i++ {
val := (*[_Gi]byte)(unsafe.Pointer(newStr))[i]
testVal := testData[i]
if val != testVal {
t.Errorf("Wanted: %v, but got: %v", testVal, val)
}
}
}
func TestStrlen(t *testing.T) {
goStr := "string\000"
bStr := goStrToCStr(goStr)
eLength := 6
oLength := strlen(bStr)
if oLength != int32(eLength) {
t.Errorf("Wanted: %v, but got: %v", eLength, oLength)
}
}
func TestStrchr(t *testing.T) {
goStr := "string\000"
bStr := goStrToCStr(goStr)
// First try to find something that is in the string
ePtr := uintptr(incBytePtr(unsafe.Pointer(bStr), 2))
obtainedPtr := uintptr(unsafe.Pointer(strchr(bStr, 'r')))
if ePtr != obtainedPtr {
t.Errorf("wanted: %v, but got: %v", ePtr, obtainedPtr)
}
// Now try something that isn't actually in the string
obtainedPtr2 := strchr(bStr, 'k')
ePtr2 := (*byte)(nil)
if ePtr2 != obtainedPtr2 {
t.Errorf("wanted: %v, but got: %v", ePtr, obtainedPtr)
}
}
func TestIncPtr(t *testing.T) {
// Test how it deals with bytes
bytePtr := unsafe.Pointer(&byteArr[arrStart])
valueByte := *(*byte)(incPtr(bytePtr, inc, byteSize))
if valueByte != byteArr[inc] {
t.Errorf(errMsg, valueByte, byteArr[inc])
}
// Test how it deals with int32s
int32Ptr := unsafe.Pointer(&int32Arr[arrStart])
valueInt32 := *(*int32)(incPtr(int32Ptr, inc, int32Size))
if valueInt32 != int32Arr[inc] {
t.Errorf(errMsg, valueInt32, int32Arr[inc])
}
// Test how it deals with int64
int64Ptr := unsafe.Pointer(&int64Arr[arrStart])
valueInt64 := *(*int64)(incPtr(int64Ptr, inc, int64Size))
if valueInt64 != int64Arr[inc] {
t.Errorf(errMsg, valueInt64, int64Arr[inc])
}
}
func TestDecPtr(t *testing.T) {
// Test how it deals with bytes
bytePtr := unsafe.Pointer(&byteArr[arrEnd])
valueByte := *(*byte)(decPtr(bytePtr, dec, byteSize))
if valueByte != byteArr[arrEnd-dec] {
t.Errorf(errMsg, valueByte, byteArr[inc])
}
// Test how it deals with ints
int32Ptr := unsafe.Pointer(&int32Arr[arrEnd])
valueInt32 := *(*int32)(decPtr(int32Ptr, dec, int32Size))
if valueInt32 != int32Arr[arrEnd-inc] {
t.Errorf(errMsg, valueInt32, int32Arr[inc])
}
// Test how it deals with int64
int64Ptr := unsafe.Pointer(&int64Arr[arrEnd])
valueInt64 := *(*int64)(decPtr(int64Ptr, dec, int64Size))
if valueInt64 != int64Arr[arrEnd-dec] {
t.Errorf(errMsg, valueInt64, int64Arr[inc])
}
}

151
rtmp/socket.go Normal file
View File

@ -0,0 +1,151 @@
/*
NAME
rtmp.go
DESCRIPTION
See Readme.md
AUTHORS
Saxon Nelson-Milton <saxon@ausocean.org>
Dan Kortschak <dan@ausocean.org>
LICENSE
rtmp.go is Copyright (C) 2017 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with revid in gpl.txt. If not, see http://www.gnu.org/licenses.
Derived from librtmp under the GNU Lesser General Public License 2.1
Copyright (C) 2005-2008 Team XBMC http://www.xbmc.org
Copyright (C) 2008-2009 Andrej Stepanchuk
Copyright (C) 2009-2010 Howard Chu
*/
package rtmp
import (
"fmt"
"log"
"net"
"golang.org/x/sys/unix"
)
// int RTMP_Connect(RTMP *r, RTMPPacket* cp);
// rtmp.c +1032
func C_RTMP_Connect(r *C_RTMP, cp *C_RTMPPacket) (ok bool) {
if r.Link.hostname == "" {
return false
}
var hostname string
if r.Link.socksport != 0 {
hostname = fmt.Sprintf("%s:%d", r.Link.sockshost, r.Link.socksport)
} else {
hostname = fmt.Sprintf("%s:%d", r.Link.hostname, r.Link.port)
}
addr, err := net.ResolveTCPAddr("tcp4", hostname)
if err != nil {
return false
}
r.m_sb.conn, err = net.DialTCP("tcp4", nil, addr)
if err != nil {
return false
}
if r.Link.socksport != 0 {
if !C_SocksNegotiate(r, addr) {
return false
}
}
f, err := r.m_sb.conn.File()
if err != nil {
log.Printf("failed to get fd to set timeout: %v", err)
return false
}
tv := setTimeval(int(r.Link.timeout))
err = unix.SetsockoptTimeval(int(f.Fd()), unix.SOL_SOCKET, unix.SO_RCVTIMEO, &tv)
if err != nil {
log.Printf("failed to set timeout: %v", err)
}
r.m_bSendCounter = true
return C_RTMP_Connect1(r, cp)
}
// int SocksNegotiate(RTMP* r);
// rtmp.c +1062
func C_SocksNegotiate(r *C_RTMP, addr *net.TCPAddr) (ok bool) {
ip := addr.IP.To4()
packet := []byte{
0x4, // SOCKS version
0x1, // Establish a TCP/IP stream connection
byte(r.Link.port >> 8), byte(r.Link.port),
ip[0], ip[1], ip[2], ip[3],
0x0, // Empty user ID string
}
C_WriteN(r, packet)
if C_ReadN(r, packet[:8]) != 8 {
return false
}
if packet[0] == 0x0 && packet[1] == 0x5a {
return true
}
// TODO: use new logger here
log.Println("C_SocksNegotitate: SOCKS returned error code!")
return false
}
// int RTMPSockBuf_Fill(RTMPSockBuf* sb);
// rtmp.c +4253
func C_RTMPSockBuf_Fill(sb *C_RTMPSockBuf) int {
if sb.sb_size == 0 {
sb.sb_start = 0
}
n, err := sb.conn.Read(sb.sb_buf[sb.sb_start+sb.sb_size:])
if err != nil {
return 0
}
sb.sb_size += n
return n
}
// int RTMPSockBuf_Send(RTMPSockBuf* sb, const char* buf, int len);
// rtmp.c +4297
// TODO replace send with golang net connection send
func C_RTMPSockBuf_Send(sb *C_RTMPSockBuf, buf []byte) int32 {
n, err := sb.conn.Write(buf)
if err != nil {
return -1
}
return int32(n)
}
// int
// RTMPSockBuf_Close(RTMPSockBuf *sb)
// rtmp.c +4369
func C_RTMPSockBuf_Close(sb *C_RTMPSockBuf) int32 {
if sb.conn != nil {
err := sb.conn.Close()
sb.conn = nil
if err == nil {
return 1
}
}
return 0
}

7
rtmp/timeval_amd64.go Normal file
View File

@ -0,0 +1,7 @@
package rtmp
import "golang.org/x/sys/unix"
func setTimeval(sec int) unix.Timeval {
return unix.Timeval{Sec: int64(sec)}
}

7
rtmp/timeval_arm.go Normal file
View File

@ -0,0 +1,7 @@
package rtmp
import "golang.org/x/sys/unix"
func setTimeval(sec int) unix.Timeval {
return unix.Timeval{Sec: int32(sec)}
}