Audiofiltering:

Create Lowpass filter with frequency control, with efficient convolution algorithm.
This commit is contained in:
ausocean-david 2022-12-14 01:53:10 +10:30
parent 18a869abfa
commit 80ab5e4768
3 changed files with 232 additions and 0 deletions

View File

@ -0,0 +1,5 @@
module bitbucket.org/ausocean/av/cmd/audiofiltering
go 1.19
require github.com/mjibson/go-dsp v0.0.0-20180508042940-11479a337f12

View File

@ -0,0 +1,2 @@
github.com/mjibson/go-dsp v0.0.0-20180508042940-11479a337f12 h1:dd7vnTDfjtwCETZDrRe+GPYNLA1jBtbZeyfyE8eZCyk=
github.com/mjibson/go-dsp v0.0.0-20180508042940-11479a337f12/go.mod h1:i/KKcxEWEO8Yyl11DYafRPKOPVYTrhxiTRigjtEEXZU=

225
cmd/audiofiltering/main.go Normal file
View File

@ -0,0 +1,225 @@
package main
import(
"math"
"fmt"
"os"
"encoding/binary"
"github.com/mjibson/go-dsp/fft"
// "github.com/mjibson/go-dsp/window"
"math/cmplx"
"time"
)
// define constants used in the generation of the sound waves
const(
SampleRate float64 = 44100
Duration = 2
tau = math.Pi * 2
length int = 88200
)
func main() {
start := time.Now()
// generate two sine waves with different frequencies to test frequency response
n := 2
audio := make([][]float64, n)
// for i:=0; i<n; i++ {
// audio[i] = generate(float64((i)*(22000/n)))
// }
audio[0] = generate(2000)
audio[1] = generate(10000)
// combine audio
combinedAudio := make([]float64, length)
for i := range audio[0] {
combinedAudio[i] = 0
for j:=0; j<n; j++ {
combinedAudio[i] += audio[j][i]
}
}
fmt.Println("audio generation:", time.Since(start))
start = time.Now()
filterLen := 500
filter := LowPass(filterLen, 20000)
fmt.Println("audio filter generation:", time.Since(start))
start = time.Now()
// convolve sinc with audio
filteredAudio := Convolve(combinedAudio, filter)
fmt.Println("convolution:", time.Since(start))
start = time.Now()
SaveAudioData(filteredAudio, "lowpass")
SaveAudioData(combinedAudio, "unfiltered")
fmt.Println("audio saving:", time.Since(start))
start = time.Now()
// SaveAudioData(filter, "test")
fmt.Println(time.Since(start))
}
func generate(Frequency float64) []float64 {
// deteremine number of samples based off duration and sample rate
nsamps := Duration * SampleRate
// generate x-values
var angle float64 = tau / float64(nsamps)
// create sample array
samp := make([]float64, int(nsamps))
// generate samples and write to file
for i := 0; i < int(nsamps); i++ {
samp[i] = math.Sin(angle * Frequency * float64(i))
}
return samp
}
func TopFive (a []float64) (topVal []float64, topI []int) {
length := 5
runMax := make([]float64, length, length)
indices := make([]int, length, length)
for i:=range a {
switch {
case a[i] > runMax[0]:
for i:=0; i<4; i++ {
runMax[4-i] = runMax[4-(1+i)]
indices[4-i] = indices[4-(1+i)]
}
runMax[0] = a[i]
indices[0] = i
case a[i] > runMax[1]:
for i:=0; i<3; i++ {
runMax[4-i] = runMax[4-(1+i)]
indices[4-i] = indices[4-(1+i)]
}
runMax[1] = a[i]
indices[1] = i
case a[i] > runMax[2]:
for i:=0; i<2; i++ {
runMax[4-i] = runMax[4-(1+i)]
indices[4-i] = indices[4-(1+i)]
}
runMax[2] = a[i]
indices[2] = i
case a[i] > runMax[3]:
for i:=0; i<1; i++ {
runMax[4-i] = runMax[4-(1+i)]
indices[4-i] = indices[4-(1+i)]
}
runMax[3] = a[i]
indices[3] = i
}
}
return runMax, indices
}
func Max (a []float64) float64 {
var runMax float64 = -1
for i:= range a {
if math.Abs(a[i]) > runMax {
runMax = math.Abs(a[i])
}
}
return runMax
}
func LowPass (n int, fc float64) (filter []float64) {
// n is number of points on either side of 0
// determine digital frequency equivalent for fc
fd := fc/(2*SampleRate)
// create sinc function
return Sinc(n, fd)
}
func Convolve (x, h []float64) []float64 {
convLen := len(x)+len(h)
y := make([]float64, convLen)
for n:=0; n<convLen; n++ {
go SubConvolve(n, x, h, y)
}
return y
}
func SubConvolve (n int, x, h, y []float64) {
var sum float64 = 0
for k:=0; k<len(x); k++ {
if n-k >= 0 && n-k < len(h) {
sum += x[k]*h[n-k]
}
}
y[n] = sum
}
func SaveAudioData (signal []float64, fileName string) {
// compute fft of signal
FFTaudio := fft.FFTReal(signal)
// normalise and save signal
spectrum := make([]float64, len(signal))
for i := range FFTaudio {
spectrum[i] = cmplx.Abs(FFTaudio[i])/float64(length)
}
maximum := Max(spectrum)
for i := range spectrum {
spectrum[i] = spectrum[i]/maximum
}
// spectrumAlt := spectrum[0:length/2 + 1]
// SAVE
file := fileName + ".txt"
f, _ := os.Create(file)
for i:=0; i<20000; i++ {
fmt.Fprintf(f, "%v\n", /*10*math.Log10*/(spectrum[i]))
}
fmt.Printf("Saved spectrum values to: %s\n", fileName)
file = fileName + ".bin"
f, _ = os.Create(file)
var buf [8]byte
for i:=0; i<length; i++ {
binary.LittleEndian.PutUint32(buf[:], math.Float32bits(float32(signal[i])))
_, _ = f.Write(buf[:])
}
}
func Sinc (nsamps int, fc float64) []float64 {
// n is number of samples either side of n = 0
h := make([]float64, nsamps*2 + 1)
for n:=-nsamps; n<=nsamps; n++ {
if n == 0 {
h[n+nsamps] = 2*fc
} else {
h[n+nsamps] = math.Sin(2*math.Pi*fc*float64(n))/(math.Pi*float64(n))
}
}
return h
}