mirror of https://bitbucket.org/ausocean/av.git
Merged in general-pcm (pull request #279)
General pcm Approved-by: Alan Noble <anoble@gmail.com>
This commit is contained in:
commit
6e3f0f2a61
|
@ -46,7 +46,7 @@ import (
|
|||
"sync"
|
||||
"time"
|
||||
|
||||
"github.com/yobert/alsa"
|
||||
yalsa "github.com/yobert/alsa"
|
||||
|
||||
"bitbucket.org/ausocean/av/codec/pcm"
|
||||
"bitbucket.org/ausocean/iot/pi/netsender"
|
||||
|
@ -78,9 +78,9 @@ type audioClient struct {
|
|||
parameters
|
||||
|
||||
// internals
|
||||
dev *alsa.Device // audio input device
|
||||
ab alsa.Buffer // ALSA's buffer
|
||||
rb *ring.Buffer // our buffer
|
||||
dev *yalsa.Device // audio input device
|
||||
pb pcm.Buffer // Buffer to contain the direct audio from ALSA.
|
||||
rb *ring.Buffer // Ring buffer to contain processed audio ready to be read.
|
||||
ns *netsender.Sender // our NetSender
|
||||
vs int // our "var sum" to track var changes
|
||||
}
|
||||
|
@ -132,12 +132,26 @@ func main() {
|
|||
// Open the requested audio device.
|
||||
err = ac.open()
|
||||
if err != nil {
|
||||
log.Log(logger.Fatal, "alsa.open failed", "error", err.Error())
|
||||
log.Log(logger.Fatal, "yalsa.open failed", "error", err.Error())
|
||||
}
|
||||
|
||||
// Capture audio in periods of ac.period seconds, and buffer rbDuration seconds in total.
|
||||
ac.ab = ac.dev.NewBufferDuration(time.Second * time.Duration(ac.period))
|
||||
recSize := (((len(ac.ab.Data) / ac.dev.BufferFormat().Channels) * ac.channels) / ac.dev.BufferFormat().Rate) * ac.rate
|
||||
ab := ac.dev.NewBufferDuration(time.Second * time.Duration(ac.period))
|
||||
sf, err := pcm.SFFromString(ab.Format.SampleFormat.String())
|
||||
if err != nil {
|
||||
log.Log(logger.Error, err.Error())
|
||||
}
|
||||
cf := pcm.BufferFormat{
|
||||
SFormat: sf,
|
||||
Channels: ab.Format.Channels,
|
||||
Rate: ab.Format.Rate,
|
||||
}
|
||||
ac.pb = pcm.Buffer{
|
||||
Format: cf,
|
||||
Data: ab.Data,
|
||||
}
|
||||
|
||||
recSize := (((len(ac.pb.Data) / ac.dev.BufferFormat().Channels) * ac.channels) / ac.dev.BufferFormat().Rate) * ac.rate
|
||||
rbLen := rbDuration / ac.period
|
||||
ac.rb = ring.NewBuffer(rbLen, recSize, rbTimeout)
|
||||
|
||||
|
@ -217,11 +231,11 @@ func (ac *audioClient) open() error {
|
|||
}
|
||||
log.Log(logger.Debug, "opening", "source", ac.source)
|
||||
|
||||
cards, err := alsa.OpenCards()
|
||||
cards, err := yalsa.OpenCards()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer alsa.CloseCards(cards)
|
||||
defer yalsa.CloseCards(cards)
|
||||
|
||||
for _, card := range cards {
|
||||
devices, err := card.Devices()
|
||||
|
@ -229,7 +243,7 @@ func (ac *audioClient) open() error {
|
|||
return err
|
||||
}
|
||||
for _, dev := range devices {
|
||||
if dev.Type != alsa.PCM || !dev.Record {
|
||||
if dev.Type != yalsa.PCM || !dev.Record {
|
||||
continue
|
||||
}
|
||||
if dev.Title == ac.source || ac.source == "" {
|
||||
|
@ -287,12 +301,12 @@ func (ac *audioClient) open() error {
|
|||
log.Log(logger.Debug, "sample rate set", "rate", defaultFrameRate)
|
||||
}
|
||||
|
||||
var fmt alsa.FormatType
|
||||
var fmt yalsa.FormatType
|
||||
switch ac.bits {
|
||||
case 16:
|
||||
fmt = alsa.S16_LE
|
||||
fmt = yalsa.S16_LE
|
||||
case 32:
|
||||
fmt = alsa.S32_LE
|
||||
fmt = yalsa.S32_LE
|
||||
default:
|
||||
return errors.New("unsupported sample bits")
|
||||
}
|
||||
|
@ -318,7 +332,7 @@ func (ac *audioClient) open() error {
|
|||
// Re-opens the device and tries again if ASLA returns an error.
|
||||
// Spends a lot of time sleeping in Paused mode.
|
||||
// ToDo: Currently, reading audio and writing to the ringbuffer are synchronous.
|
||||
// Need a way to asynchronously read from the ALSA buffer, i.e., _while_ it is recording to avoid any gaps.
|
||||
// Need a way to asynchronously read from the buf, i.e., _while_ it is recording to avoid any gaps.
|
||||
func (ac *audioClient) input() {
|
||||
for {
|
||||
ac.mu.Lock()
|
||||
|
@ -330,14 +344,14 @@ func (ac *audioClient) input() {
|
|||
}
|
||||
log.Log(logger.Debug, "recording audio for period", "seconds", ac.period)
|
||||
ac.mu.Lock()
|
||||
err := ac.dev.Read(ac.ab.Data)
|
||||
err := ac.dev.Read(ac.pb.Data)
|
||||
ac.mu.Unlock()
|
||||
if err != nil {
|
||||
log.Log(logger.Debug, "device.Read failed", "error", err.Error())
|
||||
ac.mu.Lock()
|
||||
err = ac.open() // re-open
|
||||
if err != nil {
|
||||
log.Log(logger.Fatal, "alsa.open failed", "error", err.Error())
|
||||
log.Log(logger.Fatal, "yalsa.open failed", "error", err.Error())
|
||||
}
|
||||
ac.mu.Unlock()
|
||||
continue
|
||||
|
@ -372,7 +386,7 @@ func (ac *audioClient) input() {
|
|||
// This function also handles NetReceiver configuration requests and updating of NetReceiver vars.
|
||||
func (ac *audioClient) output() {
|
||||
// Calculate the size of the output data based on wanted channels and rate.
|
||||
outLen := (((len(ac.ab.Data) / ac.ab.Format.Channels) * ac.channels) / ac.ab.Format.Rate) * ac.rate
|
||||
outLen := (((len(ac.pb.Data) / ac.pb.Format.Channels) * ac.channels) / ac.pb.Format.Rate) * ac.rate
|
||||
buf := make([]byte, outLen)
|
||||
|
||||
mime := "audio/x-wav;codec=pcm;rate=" + strconv.Itoa(ac.rate) + ";channels=" + strconv.Itoa(ac.channels) + ";bits=" + strconv.Itoa(ac.bits)
|
||||
|
@ -509,9 +523,9 @@ func read(rb *ring.Buffer, buf []byte) (int, error) {
|
|||
return n, nil
|
||||
}
|
||||
|
||||
// formatBuffer returns an ALSA buffer that has the recording data from the ac's original ALSA buffer but stored
|
||||
// formatBuffer returns a Buffer that has the recording data from the ac's original Buffer but stored
|
||||
// in the desired format specified by the ac's parameters.
|
||||
func (ac *audioClient) formatBuffer() alsa.Buffer {
|
||||
func (ac *audioClient) formatBuffer() pcm.Buffer {
|
||||
var err error
|
||||
ac.mu.Lock()
|
||||
wantChannels := ac.channels
|
||||
|
@ -519,17 +533,17 @@ func (ac *audioClient) formatBuffer() alsa.Buffer {
|
|||
ac.mu.Unlock()
|
||||
|
||||
// If nothing needs to be changed, return the original.
|
||||
if ac.ab.Format.Channels == wantChannels && ac.ab.Format.Rate == wantRate {
|
||||
return ac.ab
|
||||
if ac.pb.Format.Channels == wantChannels && ac.pb.Format.Rate == wantRate {
|
||||
return ac.pb
|
||||
}
|
||||
|
||||
formatted := alsa.Buffer{Format: ac.ab.Format}
|
||||
formatted := pcm.Buffer{Format: ac.pb.Format}
|
||||
bufCopied := false
|
||||
if ac.ab.Format.Channels != wantChannels {
|
||||
if ac.pb.Format.Channels != wantChannels {
|
||||
|
||||
// Convert channels.
|
||||
if ac.ab.Format.Channels == 2 && wantChannels == 1 {
|
||||
if formatted, err = pcm.StereoToMono(ac.ab); err != nil {
|
||||
if ac.pb.Format.Channels == 2 && wantChannels == 1 {
|
||||
if formatted, err = pcm.StereoToMono(ac.pb); err != nil {
|
||||
log.Log(logger.Warning, "channel conversion failed, audio has remained stereo", "error", err.Error())
|
||||
} else {
|
||||
formatted.Format.Channels = 1
|
||||
|
@ -538,13 +552,13 @@ func (ac *audioClient) formatBuffer() alsa.Buffer {
|
|||
}
|
||||
}
|
||||
|
||||
if ac.ab.Format.Rate != wantRate {
|
||||
if ac.pb.Format.Rate != wantRate {
|
||||
|
||||
// Convert rate.
|
||||
if bufCopied {
|
||||
formatted, err = pcm.Resample(formatted, wantRate)
|
||||
} else {
|
||||
formatted, err = pcm.Resample(ac.ab, wantRate)
|
||||
formatted, err = pcm.Resample(ac.pb, wantRate)
|
||||
}
|
||||
if err != nil {
|
||||
log.Log(logger.Warning, "rate conversion failed, audio has remained original rate", "error", err.Error())
|
||||
|
|
160
codec/pcm/pcm.go
160
codec/pcm/pcm.go
|
@ -32,105 +32,135 @@ import (
|
|||
"encoding/binary"
|
||||
"fmt"
|
||||
|
||||
"github.com/yobert/alsa"
|
||||
"github.com/pkg/errors"
|
||||
)
|
||||
|
||||
// Resample takes alsa.Buffer b and resamples the pcm audio data to 'rate' Hz and returns an alsa.Buffer with the resampled data.
|
||||
// SampleFormat is the format that a PCM Buffer's samples can be in.
|
||||
type SampleFormat int
|
||||
|
||||
// Used to represent an unknown format.
|
||||
const (
|
||||
Unknown SampleFormat = -1
|
||||
)
|
||||
|
||||
// Sample formats that we use.
|
||||
const (
|
||||
S16_LE SampleFormat = iota
|
||||
S32_LE
|
||||
// There are many more:
|
||||
// https://linux.die.net/man/1/arecord
|
||||
// https://trac.ffmpeg.org/wiki/audio%20types
|
||||
)
|
||||
|
||||
// BufferFormat contains the format for a PCM Buffer.
|
||||
type BufferFormat struct {
|
||||
SFormat SampleFormat
|
||||
Rate int
|
||||
Channels int
|
||||
}
|
||||
|
||||
// Buffer contains a buffer of PCM data and the format that it is in.
|
||||
type Buffer struct {
|
||||
Format BufferFormat
|
||||
Data []byte
|
||||
}
|
||||
|
||||
// Resample takes Buffer c and resamples the pcm audio data to 'rate' Hz and returns a Buffer with the resampled data.
|
||||
// Notes:
|
||||
// - Currently only downsampling is implemented and b's rate must be divisible by 'rate' or an error will occur.
|
||||
// - If the number of bytes in b.Data is not divisible by the decimation factor (ratioFrom), the remaining bytes will
|
||||
// - Currently only downsampling is implemented and c's rate must be divisible by 'rate' or an error will occur.
|
||||
// - If the number of bytes in c.Data is not divisible by the decimation factor (ratioFrom), the remaining bytes will
|
||||
// not be included in the result. Eg. input of length 480002 downsampling 6:1 will result in output length 80000.
|
||||
func Resample(b alsa.Buffer, rate int) (alsa.Buffer, error) {
|
||||
if b.Format.Rate == rate {
|
||||
return b, nil
|
||||
func Resample(c Buffer, rate int) (Buffer, error) {
|
||||
if c.Format.Rate == rate {
|
||||
return c, nil
|
||||
}
|
||||
if b.Format.Rate < 0 {
|
||||
return alsa.Buffer{}, fmt.Errorf("Unable to convert from: %v Hz", b.Format.Rate)
|
||||
if c.Format.Rate < 0 {
|
||||
return Buffer{}, fmt.Errorf("Unable to convert from: %v Hz", c.Format.Rate)
|
||||
}
|
||||
if rate < 0 {
|
||||
return alsa.Buffer{}, fmt.Errorf("Unable to convert to: %v Hz", rate)
|
||||
return Buffer{}, fmt.Errorf("Unable to convert to: %v Hz", rate)
|
||||
}
|
||||
|
||||
// The number of bytes in a sample.
|
||||
var sampleLen int
|
||||
switch b.Format.SampleFormat {
|
||||
case alsa.S32_LE:
|
||||
sampleLen = 4 * b.Format.Channels
|
||||
case alsa.S16_LE:
|
||||
sampleLen = 2 * b.Format.Channels
|
||||
switch c.Format.SFormat {
|
||||
case S32_LE:
|
||||
sampleLen = 4 * c.Format.Channels
|
||||
case S16_LE:
|
||||
sampleLen = 2 * c.Format.Channels
|
||||
default:
|
||||
return alsa.Buffer{}, fmt.Errorf("Unhandled ALSA format: %v", b.Format.SampleFormat)
|
||||
return Buffer{}, fmt.Errorf("Unhandled ALSA format: %v", c.Format.SFormat)
|
||||
}
|
||||
inPcmLen := len(b.Data)
|
||||
inPcmLen := len(c.Data)
|
||||
|
||||
// Calculate sample rate ratio ratioFrom:ratioTo.
|
||||
rateGcd := gcd(rate, b.Format.Rate)
|
||||
ratioFrom := b.Format.Rate / rateGcd
|
||||
rateGcd := gcd(rate, c.Format.Rate)
|
||||
ratioFrom := c.Format.Rate / rateGcd
|
||||
ratioTo := rate / rateGcd
|
||||
|
||||
// ratioTo = 1 is the only number that will result in an even sampling.
|
||||
if ratioTo != 1 {
|
||||
return alsa.Buffer{}, fmt.Errorf("unhandled from:to rate ratio %v:%v: 'to' must be 1", ratioFrom, ratioTo)
|
||||
return Buffer{}, fmt.Errorf("unhandled from:to rate ratio %v:%v: 'to' must be 1", ratioFrom, ratioTo)
|
||||
}
|
||||
|
||||
newLen := inPcmLen / ratioFrom
|
||||
resampled := make([]byte, 0, newLen)
|
||||
|
||||
// For each new sample to be generated, loop through the respective 'ratioFrom' samples in 'b.Data' to add them
|
||||
// For each new sample to be generated, loop through the respective 'ratioFrom' samples in 'c.Data' to add them
|
||||
// up and average them. The result is the new sample.
|
||||
bAvg := make([]byte, sampleLen)
|
||||
for i := 0; i < newLen/sampleLen; i++ {
|
||||
var sum int
|
||||
for j := 0; j < ratioFrom; j++ {
|
||||
switch b.Format.SampleFormat {
|
||||
case alsa.S32_LE:
|
||||
sum += int(int32(binary.LittleEndian.Uint32(b.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)])))
|
||||
case alsa.S16_LE:
|
||||
sum += int(int16(binary.LittleEndian.Uint16(b.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)])))
|
||||
switch c.Format.SFormat {
|
||||
case S32_LE:
|
||||
sum += int(int32(binary.LittleEndian.Uint32(c.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)])))
|
||||
case S16_LE:
|
||||
sum += int(int16(binary.LittleEndian.Uint16(c.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)])))
|
||||
}
|
||||
}
|
||||
avg := sum / ratioFrom
|
||||
switch b.Format.SampleFormat {
|
||||
case alsa.S32_LE:
|
||||
switch c.Format.SFormat {
|
||||
case S32_LE:
|
||||
binary.LittleEndian.PutUint32(bAvg, uint32(avg))
|
||||
case alsa.S16_LE:
|
||||
case S16_LE:
|
||||
binary.LittleEndian.PutUint16(bAvg, uint16(avg))
|
||||
}
|
||||
resampled = append(resampled, bAvg...)
|
||||
}
|
||||
|
||||
// Return a new alsa.Buffer with resampled data.
|
||||
return alsa.Buffer{
|
||||
Format: alsa.BufferFormat{
|
||||
Channels: b.Format.Channels,
|
||||
SampleFormat: b.Format.SampleFormat,
|
||||
Rate: rate,
|
||||
// Return a new Buffer with resampled data.
|
||||
return Buffer{
|
||||
Format: BufferFormat{
|
||||
Channels: c.Format.Channels,
|
||||
SFormat: c.Format.SFormat,
|
||||
Rate: rate,
|
||||
},
|
||||
Data: resampled,
|
||||
}, nil
|
||||
}
|
||||
|
||||
// StereoToMono returns raw mono audio data generated from only the left channel from
|
||||
// the given stereo recording (ALSA buffer)
|
||||
func StereoToMono(b alsa.Buffer) (alsa.Buffer, error) {
|
||||
if b.Format.Channels == 1 {
|
||||
return b, nil
|
||||
// the given stereo Buffer
|
||||
func StereoToMono(c Buffer) (Buffer, error) {
|
||||
if c.Format.Channels == 1 {
|
||||
return c, nil
|
||||
}
|
||||
if b.Format.Channels != 2 {
|
||||
return alsa.Buffer{}, fmt.Errorf("Audio is not stereo or mono, it has %v channels", b.Format.Channels)
|
||||
if c.Format.Channels != 2 {
|
||||
return Buffer{}, fmt.Errorf("Audio is not stereo or mono, it has %v channels", c.Format.Channels)
|
||||
}
|
||||
|
||||
var stereoSampleBytes int
|
||||
switch b.Format.SampleFormat {
|
||||
case alsa.S32_LE:
|
||||
switch c.Format.SFormat {
|
||||
case S32_LE:
|
||||
stereoSampleBytes = 8
|
||||
case alsa.S16_LE:
|
||||
case S16_LE:
|
||||
stereoSampleBytes = 4
|
||||
default:
|
||||
return alsa.Buffer{}, fmt.Errorf("Unhandled ALSA format %v", b.Format.SampleFormat)
|
||||
return Buffer{}, fmt.Errorf("Unhandled sample format %v", c.Format.SFormat)
|
||||
}
|
||||
|
||||
recLength := len(b.Data)
|
||||
recLength := len(c.Data)
|
||||
mono := make([]byte, recLength/2)
|
||||
|
||||
// Convert to mono: for each byte in the stereo recording, if it's in the first half of a stereo sample
|
||||
|
@ -138,17 +168,17 @@ func StereoToMono(b alsa.Buffer) (alsa.Buffer, error) {
|
|||
var inc int
|
||||
for i := 0; i < recLength; i++ {
|
||||
if i%stereoSampleBytes < stereoSampleBytes/2 {
|
||||
mono[inc] = b.Data[i]
|
||||
mono[inc] = c.Data[i]
|
||||
inc++
|
||||
}
|
||||
}
|
||||
|
||||
// Return a new alsa.Buffer with resampled data.
|
||||
return alsa.Buffer{
|
||||
Format: alsa.BufferFormat{
|
||||
Channels: 1,
|
||||
SampleFormat: b.Format.SampleFormat,
|
||||
Rate: b.Format.Rate,
|
||||
// Return a new Buffer with resampled data.
|
||||
return Buffer{
|
||||
Format: BufferFormat{
|
||||
Channels: 1,
|
||||
SFormat: c.Format.SFormat,
|
||||
Rate: c.Format.Rate,
|
||||
},
|
||||
Data: mono,
|
||||
}, nil
|
||||
|
@ -162,3 +192,27 @@ func gcd(a, b int) int {
|
|||
}
|
||||
return a
|
||||
}
|
||||
|
||||
// String returns the string representation of a SampleFormat.
|
||||
func (f SampleFormat) String() string {
|
||||
switch f {
|
||||
case S16_LE:
|
||||
return "S16_LE"
|
||||
case S32_LE:
|
||||
return "S32_LE"
|
||||
default:
|
||||
return "Unknown"
|
||||
}
|
||||
}
|
||||
|
||||
// SFFromString takes a string representing a sample format and returns the corresponding SampleFormat.
|
||||
func SFFromString(s string) (SampleFormat, error) {
|
||||
switch s {
|
||||
case "S16_LE":
|
||||
return S16_LE, nil
|
||||
case "S32_LE":
|
||||
return S32_LE, nil
|
||||
default:
|
||||
return Unknown, errors.Errorf("unknown sample format (%s)", s)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -31,8 +31,6 @@ import (
|
|||
"io/ioutil"
|
||||
"log"
|
||||
"testing"
|
||||
|
||||
"github.com/yobert/alsa"
|
||||
)
|
||||
|
||||
// TestResample tests the Resample function using a pcm file that contains audio of a freq. sweep.
|
||||
|
@ -47,13 +45,13 @@ func TestResample(t *testing.T) {
|
|||
log.Fatal(err)
|
||||
}
|
||||
|
||||
format := alsa.BufferFormat{
|
||||
Channels: 1,
|
||||
Rate: 48000,
|
||||
SampleFormat: alsa.S16_LE,
|
||||
format := BufferFormat{
|
||||
Channels: 1,
|
||||
Rate: 48000,
|
||||
SFormat: S16_LE,
|
||||
}
|
||||
|
||||
buf := alsa.Buffer{
|
||||
buf := Buffer{
|
||||
Format: format,
|
||||
Data: inPcm,
|
||||
}
|
||||
|
@ -88,13 +86,13 @@ func TestStereoToMono(t *testing.T) {
|
|||
log.Fatal(err)
|
||||
}
|
||||
|
||||
format := alsa.BufferFormat{
|
||||
Channels: 2,
|
||||
Rate: 44100,
|
||||
SampleFormat: alsa.S16_LE,
|
||||
format := BufferFormat{
|
||||
Channels: 2,
|
||||
Rate: 44100,
|
||||
SFormat: S16_LE,
|
||||
}
|
||||
|
||||
buf := alsa.Buffer{
|
||||
buf := Buffer{
|
||||
Format: format,
|
||||
Data: inPcm,
|
||||
}
|
||||
|
|
|
@ -68,8 +68,8 @@ type ALSA struct {
|
|||
mu sync.Mutex // Provides synchronisation when changing modes concurrently.
|
||||
title string // Name of audio title, or empty for the default title.
|
||||
dev *yalsa.Device // ALSA device's Audio input device.
|
||||
ab yalsa.Buffer // ALSA device's buffer.
|
||||
rb *ring.Buffer // Our buffer.
|
||||
pb pcm.Buffer // Buffer to contain the direct audio from ALSA.
|
||||
rb *ring.Buffer // Ring buffer to contain processed audio ready to be read.
|
||||
chunkSize int // This is the number of bytes that will be stored in rb at a time.
|
||||
Config // Configuration parameters for this device.
|
||||
}
|
||||
|
@ -133,10 +133,24 @@ func (d *ALSA) Set(c config.Config) error {
|
|||
}
|
||||
|
||||
// Setup the device to record with desired period.
|
||||
d.ab = d.dev.NewBufferDuration(time.Duration(d.RecPeriod * float64(time.Second)))
|
||||
ab := d.dev.NewBufferDuration(time.Duration(d.RecPeriod * float64(time.Second)))
|
||||
sf, err := pcm.SFFromString(ab.Format.SampleFormat.String())
|
||||
if err != nil {
|
||||
d.l.Log(logger.Error, pkg+err.Error())
|
||||
return err
|
||||
}
|
||||
cf := pcm.BufferFormat{
|
||||
SFormat: sf,
|
||||
Channels: ab.Format.Channels,
|
||||
Rate: ab.Format.Rate,
|
||||
}
|
||||
d.pb = pcm.Buffer{
|
||||
Format: cf,
|
||||
Data: ab.Data,
|
||||
}
|
||||
|
||||
// Account for channel conversion.
|
||||
chunkSize := float64(len(d.ab.Data) / d.dev.BufferFormat().Channels * d.Channels)
|
||||
chunkSize := float64(len(d.pb.Data) / d.dev.BufferFormat().Channels * d.Channels)
|
||||
|
||||
// Account for resampling.
|
||||
chunkSize = (chunkSize / float64(d.dev.BufferFormat().Rate)) * float64(d.SampleRate)
|
||||
|
@ -373,7 +387,7 @@ func (d *ALSA) input() {
|
|||
|
||||
// Read from audio device.
|
||||
d.l.Log(logger.Debug, pkg+"recording audio for period", "seconds", d.RecPeriod)
|
||||
err := d.dev.Read(d.ab.Data)
|
||||
err := d.dev.Read(d.pb.Data)
|
||||
if err != nil {
|
||||
d.l.Log(logger.Debug, pkg+"read failed", "error", err.Error())
|
||||
err = d.open() // re-open
|
||||
|
@ -415,26 +429,26 @@ func (d *ALSA) Read(p []byte) (int, error) {
|
|||
}
|
||||
|
||||
// formatBuffer returns audio that has been converted to the desired format.
|
||||
func (d *ALSA) formatBuffer() yalsa.Buffer {
|
||||
func (d *ALSA) formatBuffer() pcm.Buffer {
|
||||
var err error
|
||||
|
||||
// If nothing needs to be changed, return the original.
|
||||
if d.ab.Format.Channels == d.Channels && d.ab.Format.Rate == d.SampleRate {
|
||||
return d.ab
|
||||
if d.pb.Format.Channels == d.Channels && d.pb.Format.Rate == d.SampleRate {
|
||||
return d.pb
|
||||
}
|
||||
var formatted yalsa.Buffer
|
||||
if d.ab.Format.Channels != d.Channels {
|
||||
var formatted pcm.Buffer
|
||||
if d.pb.Format.Channels != d.Channels {
|
||||
// Convert channels.
|
||||
// TODO(Trek): Make this work for conversions other than stereo to mono.
|
||||
if d.ab.Format.Channels == 2 && d.Channels == 1 {
|
||||
formatted, err = pcm.StereoToMono(d.ab)
|
||||
if d.pb.Format.Channels == 2 && d.Channels == 1 {
|
||||
formatted, err = pcm.StereoToMono(d.pb)
|
||||
if err != nil {
|
||||
d.l.Log(logger.Fatal, pkg+"channel conversion failed", "error", err.Error())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if d.ab.Format.Rate != d.SampleRate {
|
||||
if d.pb.Format.Rate != d.SampleRate {
|
||||
// Convert rate.
|
||||
formatted, err = pcm.Resample(formatted, d.SampleRate)
|
||||
if err != nil {
|
||||
|
|
|
@ -32,7 +32,6 @@ import (
|
|||
"log"
|
||||
|
||||
"bitbucket.org/ausocean/av/codec/pcm"
|
||||
"github.com/yobert/alsa"
|
||||
)
|
||||
|
||||
// This program accepts an input pcm file and outputs a resampled pcm file.
|
||||
|
@ -43,7 +42,7 @@ func main() {
|
|||
var from = *flag.Int("from", 48000, "sample rate of input file")
|
||||
var to = *flag.Int("to", 8000, "sample rate of output file")
|
||||
var channels = *flag.Int("ch", 1, "number of channels in input file")
|
||||
var sf = *flag.String("sf", "S16_LE", "sample format of input audio, eg. S16_LE")
|
||||
var SFString = *flag.String("sf", "S16_LE", "sample format of input audio, eg. S16_LE")
|
||||
flag.Parse()
|
||||
|
||||
// Read pcm.
|
||||
|
@ -53,23 +52,23 @@ func main() {
|
|||
}
|
||||
fmt.Println("Read", len(inPcm), "bytes from file", inPath)
|
||||
|
||||
var sampleFormat alsa.FormatType
|
||||
switch sf {
|
||||
var sf pcm.SampleFormat
|
||||
switch SFString {
|
||||
case "S32_LE":
|
||||
sampleFormat = alsa.S32_LE
|
||||
sf = pcm.S32_LE
|
||||
case "S16_LE":
|
||||
sampleFormat = alsa.S16_LE
|
||||
sf = pcm.S16_LE
|
||||
default:
|
||||
log.Fatalf("Unhandled ALSA format: %v", sf)
|
||||
log.Fatalf("Unhandled ALSA format: %v", SFString)
|
||||
}
|
||||
|
||||
format := alsa.BufferFormat{
|
||||
Channels: channels,
|
||||
Rate: from,
|
||||
SampleFormat: sampleFormat,
|
||||
format := pcm.BufferFormat{
|
||||
Channels: channels,
|
||||
Rate: from,
|
||||
SFormat: sf,
|
||||
}
|
||||
|
||||
buf := alsa.Buffer{
|
||||
buf := pcm.Buffer{
|
||||
Format: format,
|
||||
Data: inPcm,
|
||||
}
|
||||
|
|
|
@ -32,7 +32,6 @@ import (
|
|||
"log"
|
||||
|
||||
"bitbucket.org/ausocean/av/codec/pcm"
|
||||
"github.com/yobert/alsa"
|
||||
)
|
||||
|
||||
// This program accepts an input pcm file and outputs a resampled pcm file.
|
||||
|
@ -40,7 +39,7 @@ import (
|
|||
func main() {
|
||||
var inPath = *flag.String("in", "data.pcm", "file path of input data")
|
||||
var outPath = *flag.String("out", "mono.pcm", "file path of output")
|
||||
var sf = *flag.String("sf", "S16_LE", "sample format of input audio, eg. S16_LE")
|
||||
var SFString = *flag.String("sf", "S16_LE", "sample format of input audio, eg. S16_LE")
|
||||
flag.Parse()
|
||||
|
||||
// Read pcm.
|
||||
|
@ -50,22 +49,22 @@ func main() {
|
|||
}
|
||||
fmt.Println("Read", len(inPcm), "bytes from file", inPath)
|
||||
|
||||
var sampleFormat alsa.FormatType
|
||||
switch sf {
|
||||
var sf pcm.SampleFormat
|
||||
switch SFString {
|
||||
case "S32_LE":
|
||||
sampleFormat = alsa.S32_LE
|
||||
sf = pcm.S32_LE
|
||||
case "S16_LE":
|
||||
sampleFormat = alsa.S16_LE
|
||||
sf = pcm.S16_LE
|
||||
default:
|
||||
log.Fatalf("Unhandled ALSA format: %v", sf)
|
||||
log.Fatalf("Unhandled sample format: %v", SFString)
|
||||
}
|
||||
|
||||
format := alsa.BufferFormat{
|
||||
Channels: 2,
|
||||
SampleFormat: sampleFormat,
|
||||
format := pcm.BufferFormat{
|
||||
Channels: 2,
|
||||
SFormat: sf,
|
||||
}
|
||||
|
||||
buf := alsa.Buffer{
|
||||
buf := pcm.Buffer{
|
||||
Format: format,
|
||||
Data: inPcm,
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue