code cleanup, improved corner detection in transform function, fixed some comments

This commit is contained in:
Russell Stanley 2022-01-06 13:55:40 +10:30
parent 8d4f7a5bc0
commit 6d97486876
6 changed files with 222 additions and 150 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.3 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

View File

@ -1,9 +1,6 @@
//go:build !nocv
// +build !nocv
/*
DESCRIPTION
Turbidity is a program to measure water clarity using computer vison
Plotting functions for the turbidity sensor results.
AUTHORS
Russell Stanley <russell@ausocean.org>
@ -29,79 +26,25 @@ package main
import (
"fmt"
"log"
"math"
"gonum.org/v1/plot"
"gonum.org/v1/plot/plotter"
"gonum.org/v1/plot/plotutil"
"gonum.org/v1/plot/vg"
"gocv.io/x/gocv"
)
const (
nImages = 13
nSamples = 10
)
func main() {
// Load template and standard image.
template := gocv.IMRead("template.jpg", gocv.IMReadGrayScale)
standard := gocv.IMRead("default.jpg", gocv.IMReadGrayScale)
imgs := make([][]gocv.Mat, nImages)
// Load test images.
for i := range imgs {
imgs[i] = make([]gocv.Mat, nSamples)
for j := range imgs[i] {
imgs[i][j] = gocv.IMRead(fmt.Sprintf("images/t-%v/000%v.jpg", i, j), gocv.IMReadGrayScale)
}
}
// Create turbidity sensor.
ts := TurbiditySensor{template: template, standard: standard, k1: 8, k2: 8, sobelFilterSize: 3, scale: 1.0, alpha: 1.0}
var finalRes Results
finalRes.new(nImages)
// Score each image by calculating the average score from camera burst.
for i := range imgs {
// Evaluate camera burst.
sample_result, err := ts.Evaluate(imgs[i])
if err != nil {
log.Fatalf("Evaluation Failed: %v", err)
}
// Add the average result from camera burst.
finalRes.update(average(sample_result.saturation), average(sample_result.contrast), float64(i)*2.5, i)
}
// Plot the final results.
err := plotResults(finalRes.turbidity, normalize(finalRes.saturation), normalize(finalRes.contrast))
if err != nil {
log.Fatalf("Plotting Failed: %v", err)
}
log.Printf("Saturation: %v", finalRes.saturation)
log.Printf("Contrast: %v", finalRes.contrast)
}
// Plotting Functions.
// Normalize values in a slice between 0 and 1.
func normalize(slice []float64) []float64 {
max := -math.MaxFloat64
min := math.MaxFloat64
out := make([]float64, len(slice))
if len(slice) <= 1 {
return slice
}
// Find the max and min values of the slice.
for i := range slice {
if slice[i] > max {
max = slice[i]
@ -119,9 +62,9 @@ func normalize(slice []float64) []float64 {
// Return the average of a slice.
func average(slice []float64) float64 {
var out float64
out := 0.0
// Sum all elements in the slice.
for i := range slice {
out += slice[i]
}
@ -129,7 +72,6 @@ func average(slice []float64) float64 {
}
func plotResults(x, saturation, contrast []float64) error {
err := plotToFile(
"Results",
"Almond Milk (ml)",

View File

@ -3,7 +3,7 @@
/*
DESCRIPTION
Results struct used to store results from the turbidity sensor
Results struct used to store results from the turbidity sensor.
AUTHORS
Russell Stanley <russell@ausocean.org>
@ -27,22 +27,33 @@ LICENSE
package main
// struct to hold the results of the turbidity sensor.
import "fmt"
// Results holds the results of the turbidity sensor.
type Results struct {
turbidity []float64
saturation []float64
contrast []float64
Turbidity []float64
Saturation []float64
Contrast []float64
}
func (r *Results) new(n int) {
r.turbidity = make([]float64, n)
r.saturation = make([]float64, n)
r.contrast = make([]float64, n)
// NewResults constructs the results object.
func NewResults(n int) (*Results, error) {
if n <= 0 {
return nil, fmt.Errorf("invalid result size: %v.", n)
}
// Update results to add new values at specified index.
func (r *Results) update(saturation, contrast, turbidity float64, index int) {
r.saturation[index] = saturation
r.contrast[index] = contrast
r.turbidity[index] = turbidity
r := new(Results)
r.Turbidity = make([]float64, n)
r.Saturation = make([]float64, n)
r.Contrast = make([]float64, n)
return r, nil
}
// Update adds new values to slice at specified index.
func (r *Results) Update(newSat, newCont, newTurb float64, index int) {
r.Saturation[index] = newSat
r.Contrast[index] = newCont
r.Turbidity[index] = newTurb
}

View File

@ -37,89 +37,116 @@ import (
"gocv.io/x/gocv"
)
// Turbidity Sensor.
// TurbiditySensor is a software based turbidity sensor that uses CV to determine saturation and constrast level
// of a chessboard-like target submerged in water that can be correlated to turbidity/visibility values.
type TurbiditySensor struct {
template, standard gocv.Mat
template, templateCorners gocv.Mat
standard, standardCorners gocv.Mat
k1, k2, sobelFilterSize int
alpha, scale float64
scale, alpha float64
}
// Given a slice of test images, return the sharpness and contrast scores.
func (ts TurbiditySensor) Evaluate(imgs []gocv.Mat) (Results, error) {
// NewTurbiditySensor constructor for a turbidity sensor.
func NewTurbiditySensor(template, standard gocv.Mat, k1, k2, sobelFilterSize int, scale, alpha float64) (*TurbiditySensor, error) {
ts := new(TurbiditySensor)
templateCorners := gocv.NewMat()
standardCorners := gocv.NewMat()
var result Results
result.new(len(imgs))
// Validate template image is not empty and has valid corners.
if template.Empty() {
return nil, errors.New("template image is empty.")
}
if !gocv.FindChessboardCorners(template, image.Pt(3, 3), &templateCorners, gocv.CalibCBNormalizeImage) {
return nil, errors.New("could not find corners in template image")
}
ts.template = template
ts.templateCorners = templateCorners
for i := range imgs {
// Validate standard image is not empty and has valid corners.
if standard.Empty() {
return nil, errors.New("standard image is empty.")
}
if !gocv.FindChessboardCorners(standard, image.Pt(3, 3), &standardCorners, gocv.CalibCBNormalizeImage) {
return nil, errors.New("could not find corners in standard image")
}
ts.standard = standard
ts.standardCorners = standardCorners
// Transform image.
marker, err := ts.Transform(imgs[i])
if err != nil {
return result, fmt.Errorf("Image %v: %w", i, err)
ts.k1, ts.k2, ts.sobelFilterSize = k1, k2, sobelFilterSize
ts.alpha, ts.scale = alpha, scale
return ts, nil
}
// Apply sobel filter.
edge := ts.Sobel(marker)
// Evaluate image.
scores, err := ts.EvaluateImage(marker, edge)
// Evaluate, given a slice of images, return the sharpness and contrast scores.
func (ts TurbiditySensor) Evaluate(imgs []gocv.Mat) (*Results, error) {
result, err := NewResults(len(imgs))
if err != nil {
return result, err
}
result.update(scores[0], scores[1], float64(i*10), i)
for i := range imgs {
// Transform image.
marker, err := ts.transform(imgs[i])
if err != nil {
return result, fmt.Errorf("image %v: %w", i, err)
}
// Apply sobel filter.
edge := ts.sobel(marker)
// Evaluate image.
sharpScore, contScore, err := ts.EvaluateImage(marker, edge)
if err != nil {
return result, err
}
result.Update(sharpScore, contScore, float64(i), i)
}
return result, nil
}
// Evaluate image sharpness and contrast using blocks of size k1 by k2. Return a slice of the respective scores.
func (ts TurbiditySensor) EvaluateImage(img, edge gocv.Mat) ([]float64, error) {
result := make([]float64, 2) // [0.0, 0.0]
// EvaluateImage will evaluate image sharpness and contrast using blocks of size k1 by k2. Return the respective scores.
func (ts TurbiditySensor) EvaluateImage(img, edge gocv.Mat) (float64, float64, error) {
var sharpness float64
var contrast float64
if img.Rows()%ts.k1 != 0 || img.Cols()%ts.k2 != 0 {
return nil, fmt.Errorf("Dimensions not compatible (%v, %v)", ts.k1, ts.k2)
return math.NaN(), math.NaN(), fmt.Errorf("dimensions not compatible (%v, %v)", ts.k1, ts.k2)
}
lStep := int(img.Rows() / ts.k1)
kStep := int(img.Cols() / ts.k2)
for l := 0; l < img.Rows(); l = l + lStep {
for k := 0; k < img.Cols(); k = k + kStep {
lStep := img.Rows() / ts.k1
kStep := img.Cols() / ts.k2
for l := 0; l < img.Rows(); l += lStep {
for k := 0; k < img.Cols(); k += kStep {
// Enhancement Measure Estimation (EME), provides a measure of the sharpness.
err := ts.EvaluateBlock(edge, l, k, l+lStep, k+kStep, result, "EME", ts.alpha)
if err != nil {
return nil, err
}
sharpValue := ts.evaluateBlockEME(edge, l, k, l+lStep, k+kStep)
sharpness += sharpValue
// AMEE, provides a measure of the contrast.
err = ts.EvaluateBlock(img, l, k, l+lStep, k+kStep, result, "AMEE", ts.alpha)
if err != nil {
return nil, err
contValue := ts.evaluateBlockAMEE(img, l, k, l+lStep, k+kStep)
contrast += contValue
}
}
// Scale EME based on block size.
sharpness = 2.0 / (float64(ts.k1 * ts.k2)) * sharpness
// Scale and flip AMEE based on block size.
contrast = -1.0 / (float64(ts.k1 * ts.k2)) * contrast
return sharpness, contrast, nil
}
// EME.
result[0] = 2.0 / (float64(ts.k1) * float64(ts.k2)) * result[0]
// AMEE.
result[1] = -1.0 / (float64(ts.k1) * float64(ts.k2)) * result[1]
return result, nil
}
// Evaluate a block within an image and add to to the result slice.
func (ts TurbiditySensor) EvaluateBlock(img gocv.Mat, xStart, yStart, xEnd, yEnd int, result []float64, operation string, alpha float64) error {
// minMax returns the max and min pixel values of an image block.
func (ts TurbiditySensor) minMax(img gocv.Mat, xStart, yStart, xEnd, yEnd int) (float64, float64) {
max := -math.MaxFloat64
min := math.MaxFloat64
for i := xStart; i < xEnd; i++ {
for j := yStart; j < yEnd; j++ {
value := float64(img.GetUCharAt(i, j))
// Check max/min conditions, zero values are ignored.
@ -131,52 +158,56 @@ func (ts TurbiditySensor) EvaluateBlock(img gocv.Mat, xStart, yStart, xEnd, yEnd
}
}
}
return max, min
}
// evaluateBlockEME will evaluate an image block and return the value to be added to the sharpness result.
func (ts TurbiditySensor) evaluateBlockEME(img gocv.Mat, xStart, yStart, xEnd, yEnd int) float64 {
max, min := ts.minMax(img, xStart, yStart, xEnd, yEnd)
// Blocks which have no information are ignored.
if max != -math.MaxFloat64 && min != math.MaxFloat64 && max != min {
if operation == "EME" {
result[0] += math.Log(max / min)
} else if operation == "AMEE" {
contrast := (max + min) / (max - min)
result[1] += math.Pow(alpha*(contrast), alpha) * math.Log(contrast)
} else {
return fmt.Errorf("Invalid operation: %v", operation)
return math.Log(max / min)
}
}
return nil
return 0.0
}
// Search image for matching template. Returns the transformed image which best match the template.
func (ts TurbiditySensor) Transform(img gocv.Mat) (gocv.Mat, error) {
// evaluateBlockAMEE will evaluate an image block and return the value to be added to the contrast result.
func (ts TurbiditySensor) evaluateBlockAMEE(img gocv.Mat, xStart, yStart, xEnd, yEnd int) float64 {
max, min := ts.minMax(img, xStart, yStart, xEnd, yEnd)
// Blocks which have no information are ignored.
if max != -math.MaxFloat64 && min != math.MaxFloat64 && max != min {
contrast := (max + min) / (max - min)
return math.Pow(ts.alpha*(contrast), ts.alpha) * math.Log(contrast)
}
return 0.0
}
// transform will search img for matching template. Returns the transformed image which best match the template.
func (ts TurbiditySensor) transform(img gocv.Mat) (gocv.Mat, error) {
out := gocv.NewMat()
mask := gocv.NewMat()
corners_img := gocv.NewMat()
corners_template := gocv.NewMat()
imgCorners := gocv.NewMat()
// Find corners in image.
if !gocv.FindChessboardCorners(ts.standard, image.Pt(3, 3), &corners_img, gocv.CalibCBNormalizeImage) {
// Apply default if transformation fails.
fmt.Println("Corner detection failed applying standard transformation")
if !gocv.FindChessboardCorners(ts.standard, image.Pt(3, 3), &corners_img, gocv.CalibCBNormalizeImage) {
return out, errors.New("Could not find corners in default image")
// Check image is valid.
if img.Empty() {
return out, errors.New("image is empty, cannot transform")
}
}
// Find corners in template.
if !gocv.FindChessboardCorners(ts.template, image.Pt(3, 3), &corners_template, gocv.CalibCBNormalizeImage) {
return out, errors.New("Could not find corners in template")
// Check image for corners, if non can be found corners will be set to default value.
if !gocv.FindChessboardCorners(img, image.Pt(3, 3), &imgCorners, gocv.CalibCBFastCheck) {
imgCorners = ts.standardCorners
}
// Find and apply transformation.
H := gocv.FindHomography(corners_img, &corners_template, gocv.HomograpyMethodRANSAC, 3.0, &mask, 2000, 0.995)
H := gocv.FindHomography(imgCorners, &ts.templateCorners, gocv.HomograpyMethodRANSAC, 3.0, &mask, 2000, 0.995)
gocv.WarpPerspective(img, &out, H, image.Pt(ts.template.Rows(), ts.template.Cols()))
return out, nil
}
// Apply sobel filter to an image with a given scale and return the result.
func (ts TurbiditySensor) Sobel(img gocv.Mat) gocv.Mat {
// sobel will apply sobel filter to an image and return the result.
func (ts TurbiditySensor) sobel(img gocv.Mat) gocv.Mat {
dx := gocv.NewMat()
dy := gocv.NewMat()
sobel := gocv.NewMat()

View File

@ -0,0 +1,88 @@
/*
DESCRIPTION
Testing functions for the turbidity sensor using images from
previous experiment.
AUTHORS
Russell Stanley <russell@ausocean.org>
LICENSE
Copyright (C) 2020 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package main
import (
"fmt"
"testing"
"gocv.io/x/gocv"
)
const (
nImages = 13 // Number of images to test. (Max 13)
nSamples = 10 // Number of samples for each image. (Max 10)
increment = 2.5
)
func TestImages(t *testing.T) {
// Load template and standard image.
template := gocv.IMRead("images/template.jpg", gocv.IMReadGrayScale)
standard := gocv.IMRead("images/default.jpg", gocv.IMReadGrayScale)
imgs := make([][]gocv.Mat, nImages)
// Load test images.
for i := range imgs {
imgs[i] = make([]gocv.Mat, nSamples)
for j := range imgs[i] {
imgs[i][j] = gocv.IMRead(fmt.Sprintf("images/t-%v/000%v.jpg", i, j), gocv.IMReadGrayScale)
}
}
// Create turbidity sensor.
ts, err := NewTurbiditySensor(template, standard, 8, 8, 3, 1.0, 1.0)
if err != nil {
t.Fatal(err)
}
// Create results.
results, err := NewResults(nImages)
if err != nil {
t.Fatal(err)
}
// Score each image by calculating the average score from camera burst.
for i := range imgs {
// Evaluate camera burst.
sample_result, err := ts.Evaluate(imgs[i])
if err != nil {
t.Fatalf("Evaluation Failed: %v", err)
}
// Add the average result from camera burst.
results.Update(average(sample_result.Saturation), average(sample_result.Contrast), float64(i)*increment, i)
}
// Plot the final results.
err = plotResults(results.Turbidity, normalize(results.Saturation), normalize(results.Contrast))
if err != nil {
t.Fatalf("Plotting Failed: %v", err)
}
t.Logf("Saturation: %v", results.Saturation)
t.Logf("Contrast: %v", results.Contrast)
}