filter: use build tags to separate debug code from release code

This commit is contained in:
Scott 2020-02-03 14:28:06 +10:30
parent a7346fe68f
commit 5917f35ccd
7 changed files with 165 additions and 91 deletions

70
filter/debug.go Normal file
View File

@ -0,0 +1,70 @@
// +build debug
// +build !circleci
/*
DESCRIPTION
Displays debug information for the motion filters.
AUTHORS
Scott Barnard <scott@ausocean.org>
LICENSE
This file is Copyright (C) 2020 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package filter
import (
"image"
"image/color"
"gocv.io/x/gocv"
)
// debugWindows is used for displaying debug information for the motion filters.
type debugWindows struct {
windows []*gocv.Window
}
// closeWindows frees resources used by gocv.
func (d *debugWindows) closeWindows() {
for _, window := range d.windows {
window.Close()
}
}
// newWindows creates debugging windows for the motion filter.
func (d *debugWindows) newWindows(name string) {
d.windows = []*gocv.Window{gocv.NewWindow(name + ": Bounding boxes"), gocv.NewWindow(name + ": Motion")}
}
// showDebug displays debug information for the motion filters.
func (d *debugWindows) showDebug(img, imgDelta gocv.Mat, motion bool, contours ...[][]image.Point) {
if len(contours) > 0 {
for _, c := range contours[0] {
rect := gocv.BoundingRect(c)
gocv.Rectangle(&img, rect, color.RGBA{0, 0, 255, 0}, 1)
}
}
if motion {
gocv.PutText(&img, "Motion", image.Pt(32, 32), gocv.FontHersheyPlain, 2.0, color.RGBA{255, 0, 0, 0}, 2)
}
d.windows[0].IMShow(img)
d.windows[1].IMShow(imgDelta)
d.windows[0].WaitKey(1)
}

View File

@ -30,9 +30,6 @@ LICENSE
package filter
import (
"fmt"
"image"
"image/color"
"io"
"gocv.io/x/gocv"
@ -42,20 +39,21 @@ import (
// the absolute difference for each pixel between two frames, then finds the mean. If
// the mean is above a given threshold, then it is considered motion.
type Difference struct {
debugWindows
dst io.WriteCloser
thresh float64
prev gocv.Mat
debug bool
windows []*gocv.Window
}
// NewDifference returns a pointer to a new Difference struct.
func NewDifference(dst io.WriteCloser, debug bool, threshold float64) *Difference {
var windows []*gocv.Window
if debug {
windows = []*gocv.Window{gocv.NewWindow("Diff: Bounding boxes"), gocv.NewWindow("Diff: Motion")}
func NewDifference(dst io.WriteCloser, threshold float64) *Difference {
d := &Difference{
dst: dst,
thresh: threshold,
prev: gocv.NewMat(),
}
return &Difference{dst, threshold, gocv.NewMat(), debug, windows}
d.newWindows("DIFF")
return d
}
// Implements io.Closer.
@ -63,9 +61,7 @@ func NewDifference(dst io.WriteCloser, debug bool, threshold float64) *Differenc
// it using c-go.
func (d *Difference) Close() error {
d.prev.Close()
for _, window := range d.windows {
window.Close()
}
d.closeWindows()
return nil
}
@ -101,23 +97,7 @@ func (d *Difference) Write(f []byte) (int, error) {
d.prev = img.Clone()
// Draw debug information.
if d.debug {
if mean >= d.thresh {
gocv.PutText(
&img,
fmt.Sprintf("motion - mean:%f", mean),
image.Pt(32, 32),
gocv.FontHersheyPlain,
2.0,
color.RGBA{255, 0, 0, 0},
2,
)
}
d.windows[0].IMShow(img)
d.windows[1].IMShow(imgDelta)
d.windows[0].WaitKey(1)
}
d.showDebug(img, imgDelta, mean > d.thresh)
// Don't write to destination if there is no motion.
if mean < d.thresh {

View File

@ -32,16 +32,16 @@ import (
)
// NewMOG returns a pointer to a new NoOp struct for testing purposes only.
func NewMOG(dst io.WriteCloser, area, threshold float64, history int, debug bool, hf int, scaleFactor int) *NoOp {
func NewMOG(dst io.WriteCloser, area, threshold float64, history int, hf int, scaleFactor int) *NoOp {
return &NoOp{dst: dst}
}
// NewKNN returns a pointer to a new NoOp struct for testing purposes only.
func NewKNN(dst io.WriteCloser, area, threshold float64, history, kernelSize int, debug bool, hf int, scaleFactor int) *NoOp {
func NewKNN(dst io.WriteCloser, area, threshold float64, history, kernelSize int, hf int, scaleFactor int) *NoOp {
return &NoOp{dst: dst}
}
// NewDiffference returns a pointer to a new NoOp struct for testing purposes only.
func NewDifference(dst io.WriteCloser, debug bool, threshold float64) *NoOp {
func NewDifference(dst io.WriteCloser, threshold float64) *NoOp {
return &NoOp{dst: dst}
}

View File

@ -31,7 +31,6 @@ package filter
import (
"fmt"
"image"
"image/color"
"io"
"gocv.io/x/gocv"
@ -40,12 +39,11 @@ import (
// KNN is a filter that provides basic motion detection. KNN is short for
// K-Nearest Neighbours method.
type KNN struct {
debugWindows
dst io.WriteCloser // Destination to which motion containing frames go.
area float64 // The minimum area that a contour can be found in.
bs *gocv.BackgroundSubtractorKNN // Uses the KNN algorithm to find the difference between the current and background frame.
knl gocv.Mat // Matrix that is used for calculations.
debug bool // If true then debug windows with the bounding boxes and difference will be shown on the screen.
windows []*gocv.Window // Holds debug windows.
hold [][]byte // Will hold all frames up to hf (so only every hf frame is motion detected).
hf int // The number of frames to be held.
hfCount int // Counter for the hold array.
@ -53,14 +51,20 @@ type KNN struct {
}
// NewKNN returns a pointer to a new KNN filter struct.
func NewKNN(dst io.WriteCloser, area, threshold float64, history, kernelSize int, debug bool, hf int, scaleFactor int) *KNN {
func NewKNN(dst io.WriteCloser, area, threshold float64, history, kernelSize int, hf int, scaleFactor int) *KNN {
bs := gocv.NewBackgroundSubtractorKNNWithParams(history, threshold, false)
k := gocv.GetStructuringElement(gocv.MorphRect, image.Pt(kernelSize, kernelSize))
var windows []*gocv.Window
if debug {
windows = []*gocv.Window{gocv.NewWindow("KNN: Bounding boxes"), gocv.NewWindow("KNN: Motion")}
m := &KNN{
dst: dst,
area: area,
bs: &bs,
knl: k,
hold: make([][]byte, hf-1),
hf: hf,
scale: 1 / float64(scaleFactor),
}
return &KNN{dst, area, &bs, k, debug, windows, make([][]byte, hf-1), hf, 0, 1 / float64(scaleFactor)}
m.newWindows("KNN")
return m
}
// Implements io.Closer.
@ -69,9 +73,7 @@ func NewKNN(dst io.WriteCloser, area, threshold float64, history, kernelSize int
func (m *KNN) Close() error {
m.bs.Close()
m.knl.Close()
for _, window := range m.windows {
window.Close()
}
m.closeWindows()
return nil
}
@ -122,20 +124,7 @@ func (m *KNN) Write(f []byte) (int, error) {
}
// Draw debug information.
if m.debug {
for _, c := range contours {
rect := gocv.BoundingRect(c)
gocv.Rectangle(&img, rect, color.RGBA{0, 0, 255, 0}, 1)
}
if len(contours) > 0 {
gocv.PutText(&img, "Motion", image.Pt(32, 32), gocv.FontHersheyPlain, 2.0, color.RGBA{255, 0, 0, 0}, 2)
}
m.windows[0].IMShow(img)
m.windows[1].IMShow(imgDelta)
m.windows[0].WaitKey(1)
}
m.showDebug(img, imgDelta, len(contours) > 0, contours)
// Don't write to destination if there is no motion.
if len(contours) == 0 {

View File

@ -31,7 +31,6 @@ package filter
import (
"fmt"
"image"
"image/color"
"io"
"gocv.io/x/gocv"
@ -40,12 +39,11 @@ import (
// MOG is a filter that provides basic motion detection. MoG is short for
// Mixture of Gaussians method.
type MOG struct {
debugWindows
dst io.WriteCloser // Destination to which motion containing frames go.
area float64 // The minimum area that a contour can be found in.
bs *gocv.BackgroundSubtractorMOG2 // Uses the MOG algorithm to find the difference between the current and background frame.
knl gocv.Mat // Matrix that is used for calculations.
debug bool // If true then debug windows with the bounding boxes and difference will be shown on the screen.
windows []*gocv.Window // Holds debug windows.
hold [][]byte // Will hold all frames up to hf (so only every hf frame is motion detected).
hf int // The number of frames to be held.
hfCount int // Counter for the hold array.
@ -53,14 +51,20 @@ type MOG struct {
}
// NewMOG returns a pointer to a new MOG filter struct.
func NewMOG(dst io.WriteCloser, area, threshold float64, history int, debug bool, hf int, scaleFactor int) *MOG {
func NewMOG(dst io.WriteCloser, area, threshold float64, history int, hf int, scaleFactor int) *MOG {
bs := gocv.NewBackgroundSubtractorMOG2WithParams(history, threshold, false)
k := gocv.GetStructuringElement(gocv.MorphRect, image.Pt(3, 3))
var windows []*gocv.Window
if debug {
windows = []*gocv.Window{gocv.NewWindow("MOG: Bounding boxes"), gocv.NewWindow("MOG: Motion")}
m := &MOG{
dst: dst,
area: area,
bs: &bs,
knl: k,
hold: make([][]byte, hf-1),
hf: hf,
scale: 1 / float64(scaleFactor),
}
return &MOG{dst, area, &bs, k, debug, windows, make([][]byte, hf-1), hf, 0, 1 / float64(scaleFactor)}
m.newWindows("MOG")
return m
}
// Implements io.Closer.
@ -69,9 +73,7 @@ func NewMOG(dst io.WriteCloser, area, threshold float64, history int, debug bool
func (m *MOG) Close() error {
m.bs.Close()
m.knl.Close()
for _, window := range m.windows {
window.Close()
}
m.closeWindows()
return nil
}
@ -122,20 +124,7 @@ func (m *MOG) Write(f []byte) (int, error) {
}
// Draw debug information.
if m.debug {
for _, c := range contours {
rect := gocv.BoundingRect(c)
gocv.Rectangle(&img, rect, color.RGBA{0, 0, 255, 0}, 1)
}
if len(contours) > 0 {
gocv.PutText(&img, "Motion", image.Pt(32, 32), gocv.FontHersheyPlain, 2.0, color.RGBA{255, 0, 0, 0}, 2)
}
m.windows[0].IMShow(img)
m.windows[1].IMShow(imgDelta)
m.windows[0].WaitKey(1)
}
m.showDebug(img, imgDelta, len(contours) > 0, contours)
// Don't write to destination if there is no motion.
if len(contours) == 0 {

46
filter/release.go Normal file
View File

@ -0,0 +1,46 @@
// +build !debug
// +build !circleci
/*
DESCRIPTION
Displays debug information for the motion filters.
AUTHORS
Scott Barnard <scott@ausocean.org>
LICENSE
This file is Copyright (C) 2020 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package filter
import (
"image"
"gocv.io/x/gocv"
)
// debugWindows is used for displaying debug information for the motion filters.
type debugWindows struct{}
// closeWindows frees resources used by gocv.
func (d *debugWindows) closeWindows() {}
// newWindows creates debugging windows for the motion filter.
func (d *debugWindows) newWindows(name string) {}
// showDebug displays debug information for the motion filters.
func (d *debugWindows) showDebug(img, imgDelta gocv.Mat, motion bool, contours ...[][]image.Point) {}

View File

@ -341,15 +341,15 @@ func (r *Revid) setupPipeline(mtsEnc func(dst io.WriteCloser, rate float64) (io.
case config.FilterNoOp:
r.filters[i] = filter.NewNoOp(dst)
case config.FilterMOG:
r.filters[i] = filter.NewMOG(dst, r.cfg.MOGMinArea, r.cfg.MOGThreshold, int(r.cfg.MOGHistory), r.cfg.ShowWindows, r.cfg.MotionInterval, r.cfg.MotionDownscaling)
r.filters[i] = filter.NewMOG(dst, r.cfg.MOGMinArea, r.cfg.MOGThreshold, int(r.cfg.MOGHistory), r.cfg.MotionInterval, r.cfg.MotionDownscaling)
case config.FilterVariableFPS:
r.filters[i] = filter.NewVariableFPS(dst, r.cfg.MinFPS, filter.NewMOG(dst, r.cfg.MOGMinArea, r.cfg.MOGThreshold, int(r.cfg.MOGHistory), r.cfg.ShowWindows, r.cfg.MotionInterval, r.cfg.MotionDownscaling))
r.filters[i] = filter.NewVariableFPS(dst, r.cfg.MinFPS, filter.NewMOG(dst, r.cfg.MOGMinArea, r.cfg.MOGThreshold, int(r.cfg.MOGHistory), r.cfg.MotionInterval, r.cfg.MotionDownscaling))
case config.FilterKNN:
r.filters[i] = filter.NewKNN(dst, r.cfg.KNNMinArea, r.cfg.KNNThreshold, int(r.cfg.KNNHistory), int(r.cfg.KNNKernel), r.cfg.ShowWindows, r.cfg.MotionInterval, r.cfg.MotionDownscaling)
r.filters[i] = filter.NewKNN(dst, r.cfg.KNNMinArea, r.cfg.KNNThreshold, int(r.cfg.KNNHistory), int(r.cfg.KNNKernel), r.cfg.MotionInterval, r.cfg.MotionDownscaling)
case config.FilterDifference:
r.filters[i] = filter.NewDifference(dst, r.cfg.ShowWindows, r.cfg.DiffThreshold)
r.filters[i] = filter.NewDifference(dst, r.cfg.DiffThreshold)
case config.FilterBasic:
r.filters[i] = filter.NewBasic(dst, r.cfg.ShowWindows, r.cfg.BasicThreshold, r.cfg.BasicPixels)
r.filters[i] = filter.NewBasic(dst, false, r.cfg.BasicThreshold, r.cfg.BasicPixels)
default:
panic("Undefined Filter")
}