mirror of https://bitbucket.org/ausocean/av.git
Added experimental setup functionality
This commit is contained in:
parent
32cfb6c00f
commit
3ab081b991
|
@ -12,58 +12,69 @@ import (
|
|||
)
|
||||
|
||||
func main() {
|
||||
n := 10
|
||||
n_images := 6
|
||||
n_samples := 10
|
||||
|
||||
// Load template
|
||||
template := gocv.IMRead("template.jpg", gocv.IMReadGrayScale)
|
||||
standard := gocv.IMRead("standard.jpg", gocv.IMReadGrayScale)
|
||||
|
||||
// Read images
|
||||
images := make([]gocv.Mat, n)
|
||||
images := make([][]gocv.Mat, n_images)
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
images[i] = gocv.IMRead(fmt.Sprintf("images/generation-5/000%v.jpg", i), gocv.IMReadGrayScale)
|
||||
//Load images
|
||||
for i := 0; i < n_images; i++ {
|
||||
images[i] = make([]gocv.Mat, n_samples)
|
||||
for j := 0; j < n_samples; j++ {
|
||||
images[i][j] = gocv.IMRead(fmt.Sprintf("images/t-%v/000%v.jpg", i, j), gocv.IMReadGrayScale)
|
||||
}
|
||||
}
|
||||
|
||||
// Calulate turbidity
|
||||
ts := TurbiditySensor{template: template, k1: 90, k2: 90, scale: 5.0, alpha: 1.0}
|
||||
// Create turbidity sensor
|
||||
ts := TurbiditySensor{template: template, standard: standard, k1: 90, k2: 90, scale: 5.0, alpha: 1.0}
|
||||
|
||||
var final_result Results
|
||||
final_result.New(n_images)
|
||||
|
||||
// Score each image by calculating the average score from camera burst
|
||||
for i := range images {
|
||||
|
||||
//Evaluate camera burst
|
||||
sample_result, err := ts.Evaluate(n_samples, images[i])
|
||||
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
}
|
||||
|
||||
// Append the average result from camera burst
|
||||
final_result.Append(Average(sample_result.saturation), Average(sample_result.contrast), float64((i+1)*10), i)
|
||||
}
|
||||
|
||||
// Plot the final results
|
||||
err := PlotResults(final_result.turbidity, Normalize(final_result.saturation), Normalize(final_result.contrast))
|
||||
|
||||
fmt.Println(final_result.saturation)
|
||||
fmt.Println(final_result.contrast)
|
||||
|
||||
err := ts.Evaluate(n, images)
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
}
|
||||
}
|
||||
|
||||
// RESULTS
|
||||
type Results struct {
|
||||
turbidity []float64
|
||||
saturation []float64
|
||||
contrast []float64
|
||||
}
|
||||
// PLOTTING FUNCTIONS
|
||||
|
||||
func (r *Results) New(n int) {
|
||||
r.turbidity = make([]float64, n)
|
||||
r.saturation = make([]float64, n)
|
||||
r.contrast = make([]float64, n)
|
||||
}
|
||||
|
||||
func (r *Results) Append(saturation, contrast, turbidity float64, i int) {
|
||||
r.saturation[i] = saturation
|
||||
r.contrast[i] = contrast
|
||||
r.turbidity[i] = turbidity
|
||||
}
|
||||
|
||||
func Normalize(slice []float64, n int) []float64 {
|
||||
// Normalize values in a slice between 0 and 1
|
||||
func Normalize(slice []float64) []float64 {
|
||||
|
||||
max := -1e10
|
||||
min := 1e10
|
||||
|
||||
out := make([]float64, n)
|
||||
out := make([]float64, len(slice))
|
||||
|
||||
if n <= 1 {
|
||||
if len(slice) <= 1 {
|
||||
return slice
|
||||
}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
for i := range slice {
|
||||
if slice[i] > max {
|
||||
max = slice[i]
|
||||
}
|
||||
|
@ -72,19 +83,30 @@ func Normalize(slice []float64, n int) []float64 {
|
|||
}
|
||||
}
|
||||
|
||||
for i := 0; i < n; i++ {
|
||||
for i := range slice {
|
||||
out[i] = (slice[i] - min) / (max - min)
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
// PLOTTING
|
||||
// Return the average of a slice
|
||||
func Average(slice []float64) float64 {
|
||||
|
||||
out := 0.0
|
||||
|
||||
for i := range slice {
|
||||
out += slice[i]
|
||||
}
|
||||
|
||||
return out / float64(len(slice))
|
||||
}
|
||||
|
||||
func PlotResults(x, saturation, contrast []float64) error {
|
||||
|
||||
err := plotToFile(
|
||||
"Results",
|
||||
"Filter Size",
|
||||
"Turbidity (Almond Milk) (ml)",
|
||||
"Score",
|
||||
func(p *plot.Plot) error {
|
||||
return plotutil.AddLinePoints(p,
|
||||
|
@ -93,9 +115,11 @@ func PlotResults(x, saturation, contrast []float64) error {
|
|||
)
|
||||
},
|
||||
)
|
||||
|
||||
if err != nil {
|
||||
return fmt.Errorf("Could not plot results: %v", err)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
|
@ -121,7 +145,9 @@ func plotToFile(name, xTitle, yTitle string, draw func(*plot.Plot) error) error
|
|||
|
||||
// plotterXY provides a plotter.XYs type value based on the given x and y data.
|
||||
func plotterXY(x, y []float64) plotter.XYs {
|
||||
|
||||
xy := make(plotter.XYs, len(x))
|
||||
|
||||
for i := range x {
|
||||
xy[i].X = x[i]
|
||||
xy[i].Y = y[i]
|
||||
|
|
|
@ -12,8 +12,8 @@ func (r *Results) New(n int) {
|
|||
r.contrast = make([]float64, n)
|
||||
}
|
||||
|
||||
func (r *Results) Append(saturation, contrast, turbidity float64, i int) {
|
||||
r.saturation[i] = saturation
|
||||
r.contrast[i] = contrast
|
||||
r.turbidity[i] = turbidity
|
||||
func (r *Results) Append(saturation, contrast, turbidity float64, index int) {
|
||||
r.saturation[index] = saturation
|
||||
r.contrast[index] = contrast
|
||||
r.turbidity[index] = turbidity
|
||||
}
|
|
@ -2,20 +2,179 @@ package main
|
|||
|
||||
import (
|
||||
"fmt"
|
||||
"image"
|
||||
"math"
|
||||
|
||||
"gocv.io/x/gocv"
|
||||
)
|
||||
|
||||
func main() {
|
||||
var flag gocv.IMReadFlag = 0
|
||||
|
||||
window := gocv.NewWindow("Test")
|
||||
img := gocv.IMRead("secci.jpg", flag)
|
||||
|
||||
fmt.Print(img.Size())
|
||||
|
||||
for {
|
||||
window.IMShow(img)
|
||||
window.WaitKey(0)
|
||||
}
|
||||
// TURBIDITY SENSOR
|
||||
type TurbiditySensor struct {
|
||||
template, standard gocv.Mat
|
||||
k1, k2 int //block size
|
||||
alpha, scale float64
|
||||
}
|
||||
|
||||
// Given a slice of test images of size n, return the sharpness and contrast scores
|
||||
func (ts TurbiditySensor) Evaluate(n int, images []gocv.Mat) (Results, error) {
|
||||
|
||||
var result Results
|
||||
result.New(n)
|
||||
|
||||
for i := range images {
|
||||
|
||||
// Transform image
|
||||
marker, err := ts.Transform(images[i])
|
||||
|
||||
if err != nil {
|
||||
return result, fmt.Errorf("Image %v: %v", i, err)
|
||||
}
|
||||
|
||||
// Apply sobel filter
|
||||
edge := ts.Sobel(marker, ts.scale)
|
||||
|
||||
// Evaluate
|
||||
out, err := ts.EvaluateImage(marker, edge, ts.k1, ts.k2, ts.alpha)
|
||||
|
||||
if err != nil {
|
||||
return result, err
|
||||
}
|
||||
|
||||
result.Append(out[0], out[1], float64((i+1)*10), i)
|
||||
}
|
||||
|
||||
return result, nil
|
||||
}
|
||||
|
||||
// Evaluate image sharpness and contrast using blocks of size k1 by k2. Return a slice of the respective scores
|
||||
func (ts TurbiditySensor) EvaluateImage(img, edge gocv.Mat, k1, k2 int, alpha float64) ([]float64, error) {
|
||||
|
||||
// Slice to store results
|
||||
result := make([]float64, 2) // [0.0, 0.0]
|
||||
|
||||
if img.Rows()%k1 != 0 || img.Cols()%k2 != 0 {
|
||||
return result, fmt.Errorf("Dimensions not compatible (%v, %v)", k1, k2)
|
||||
}
|
||||
|
||||
l_step := int(img.Rows() / k1)
|
||||
k_step := int(img.Cols() / k2)
|
||||
|
||||
for l := 0; l < img.Rows(); l = l + l_step {
|
||||
for k := 0; k < img.Cols(); k = k + k_step {
|
||||
|
||||
//EME
|
||||
err := ts.EvaluateBlock(edge, l, k, l+l_step, k+k_step, result, "EME", alpha)
|
||||
|
||||
if err != nil {
|
||||
return result, err
|
||||
}
|
||||
|
||||
//AMEE
|
||||
err = ts.EvaluateBlock(img, l, k, l+l_step, k+k_step, result, "AMEE", alpha)
|
||||
|
||||
if err != nil {
|
||||
return result, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// EME
|
||||
result[0] = 2.0 / (float64(k1) * float64(k1)) * result[0]
|
||||
|
||||
// AMEE
|
||||
result[1] = -1.0 / (float64(k1) * float64(k1)) * result[1]
|
||||
|
||||
return result, nil
|
||||
}
|
||||
|
||||
// Evaluate a block within and image and add to to the result slice
|
||||
func (ts TurbiditySensor) EvaluateBlock(img gocv.Mat, l1, k1, l2, k2 int, result []float64, operation string, alpha float64) error {
|
||||
|
||||
max := -1e10
|
||||
min := 1e10
|
||||
|
||||
for i := l1; i < l2; i++ {
|
||||
for j := k1; j < k2; j++ {
|
||||
|
||||
value := float64(img.GetUCharAt(i, j))
|
||||
|
||||
// Check max/min conditions, zero values are ignored
|
||||
if value > max && value != 0.0 {
|
||||
max = value
|
||||
}
|
||||
if value < min && value != 0.0 {
|
||||
min = value
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Blocks which have no information are ignored
|
||||
if max != -1e10 && min != 1e10 && max != min {
|
||||
if operation == "EME" {
|
||||
|
||||
result[0] += math.Log(max / min)
|
||||
|
||||
} else if operation == "AMEE" {
|
||||
|
||||
contrast := (max + min) / (max - min)
|
||||
result[1] += math.Pow(alpha*(contrast), alpha) * math.Log(contrast)
|
||||
|
||||
} else {
|
||||
return fmt.Errorf("Invalid operation: %v", operation)
|
||||
}
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
// Search image for matching template. Returns the transformed image which best match the template
|
||||
func (ts TurbiditySensor) Transform(img gocv.Mat) (gocv.Mat, error) {
|
||||
|
||||
out := gocv.NewMat()
|
||||
mask := gocv.NewMat()
|
||||
|
||||
corners_img := gocv.NewMat()
|
||||
corners_template := gocv.NewMat()
|
||||
|
||||
// Find corners in image
|
||||
if !gocv.FindChessboardCorners(img, image.Pt(3, 3), &corners_img, gocv.CalibCBNormalizeImage) {
|
||||
|
||||
// Apply default if transformation fails
|
||||
// fmt.Println("Corner detection failed applying standard transformation")
|
||||
|
||||
if !gocv.FindChessboardCorners(ts.standard, image.Pt(3, 3), &corners_img, gocv.CalibCBNormalizeImage) {
|
||||
return out, fmt.Errorf("Could not find corners in default image")
|
||||
}
|
||||
}
|
||||
|
||||
// Find corners in template
|
||||
if !gocv.FindChessboardCorners(ts.template, image.Pt(3, 3), &corners_template, gocv.CalibCBNormalizeImage) {
|
||||
return out, fmt.Errorf("Could not find corners in template")
|
||||
}
|
||||
|
||||
// Find and apply transformation
|
||||
H := gocv.FindHomography(corners_img, &corners_template, gocv.HomograpyMethodRANSAC, 3.0, &mask, 2000, 0.995)
|
||||
gocv.WarpPerspective(img, &out, H, image.Pt(ts.template.Rows(), ts.template.Cols()))
|
||||
|
||||
return out, nil
|
||||
}
|
||||
|
||||
// Apply sobel filter to an image with a given scale and return the result
|
||||
func (ts TurbiditySensor) Sobel(img gocv.Mat, scale float64) gocv.Mat {
|
||||
|
||||
dx := gocv.NewMat()
|
||||
dy := gocv.NewMat()
|
||||
sobel := gocv.NewMat()
|
||||
|
||||
// Apply filter
|
||||
gocv.Sobel(img, &dx, gocv.MatTypeCV64F, 0, 1, 3, scale, 0.0, gocv.BorderConstant)
|
||||
gocv.Sobel(img, &dy, gocv.MatTypeCV64F, 1, 0, 3, scale, 0.0, gocv.BorderConstant)
|
||||
|
||||
// Convert to unsigned
|
||||
gocv.ConvertScaleAbs(dx, &dx, 1.0, 0.0)
|
||||
gocv.ConvertScaleAbs(dy, &dy, 1.0, 0.0)
|
||||
|
||||
// Add x and y components
|
||||
gocv.AddWeighted(dx, 0.5, dy, 0.5, 0, &sobel)
|
||||
|
||||
return sobel
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue