av/cmd/adpcmgo/codec.go

176 lines
3.7 KiB
Go
Raw Normal View History

package adpcmgo
import (
2019-02-06 08:09:14 +03:00
"encoding/binary"
"fmt"
"math"
)
// table of index changes
2019-02-06 08:09:14 +03:00
var indexTable = []int16{
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8,
}
// quantize step size table
2019-02-06 08:09:14 +03:00
var stepTable = []int16{
7, 8, 9, 10, 11, 12, 13, 14,
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024,
3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484,
7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794,
32767,
}
var (
2019-02-06 08:09:14 +03:00
encPred int16
encIndex int16
decPred int16
decIndex int16
decStep int16 = 7
)
// EncodeSample takes a single 16 bit PCM sample and
// returns a byte of which the last 4 bits are an encoded ADPCM nibble
2019-02-06 08:09:14 +03:00
func EncodeSample(sample int16) byte {
// find difference from predicted sample
delta := sample - encPred
// set sign bit and find absolute value of difference
2019-02-06 08:09:14 +03:00
var nibble byte
if delta < 0 {
2019-02-06 08:09:14 +03:00
nibble = 8
delta = -delta
}
step := stepTable[encIndex]
diff := step >> 3
var mask byte = 4
// quantize delta down to four bits
for i := 0; i < 3; i++ {
if delta > step {
2019-02-06 08:09:14 +03:00
nibble |= mask
delta -= step
diff += step
}
mask >>= 1
step >>= 1
}
// adjust predicted sample based on calculated difference
2019-02-06 08:09:14 +03:00
if nibble&8 != 0 {
encPred -= diff
} else {
encPred += diff
}
// check for underflow and overflow
if encPred < math.MinInt16 {
encPred = math.MinInt16
} else if encPred > math.MaxInt16 {
encPred = math.MaxInt16
}
2019-02-06 08:09:14 +03:00
encIndex += indexTable[nibble&7]
// check for underflow and overflow
if encIndex < 0 {
encIndex = 0
2019-02-06 08:09:14 +03:00
} else if encIndex > int16(len(stepTable)-1) {
encIndex = int16(len(stepTable) - 1)
}
2019-02-06 08:09:14 +03:00
return nibble
}
// DecodeSample takes a byte, the last 4 bits of which contain a single
2019-02-06 08:09:14 +03:00
// 4 bit ADPCM nibble, and returns a 16 bit decoded PCM sample
func DecodeSample(nibble byte) int16 {
2019-02-06 08:09:14 +03:00
// compute predicted sample estimate (decPred):
2019-02-06 08:09:14 +03:00
// calculate difference
var diff int16
if nibble&4 != 0 {
diff += decStep
}
if nibble&2 != 0 {
diff += decStep >> 1
}
if nibble&1 != 0 {
diff += decStep >> 2
}
diff += decStep >> 3
2019-02-06 08:09:14 +03:00
// account for sign bit
if nibble&8 != 0 {
diff = -diff
}
2019-02-06 08:09:14 +03:00
// adjust predicted sample based on calculated difference
decPred += diff
2019-02-06 08:09:14 +03:00
// check for overflow and underflow
if decPred > math.MaxInt16 {
decPred = math.MaxInt16
} else if decPred < math.MinInt16 {
decPred = math.MinInt16
}
2019-02-06 08:09:14 +03:00
// compute new step size:
// adjust index into step size lookup table using nibble
decIndex += indexTable[nibble]
2019-02-06 08:09:14 +03:00
// check for overflow and underflow
if decIndex < 0 {
decIndex = 0
2019-02-06 08:09:14 +03:00
} else if decIndex > int16(len(stepTable)-1) {
decIndex = int16(len(stepTable) - 1)
}
2019-02-06 08:09:14 +03:00
// find new quantizer step size
decStep = stepTable[decIndex]
return decPred
}
2019-02-06 08:09:14 +03:00
func calcHead(sample []byte) []byte {
fmt.Println(sample[0], sample[1])
intSample := int16(binary.LittleEndian.Uint16(sample))
fmt.Println("before enc", intSample)
EncodeSample(intSample)
head := sample
fmt.Println(encIndex)
head = append(head, byte(uint16(encIndex)))
head = append(head, byte(0x00))
return head
}
func EncodeBlock(block []byte) ([]byte, error) {
if len(block) != 1010 {
return nil, fmt.Errorf("unsupported block size. Given: %v, expected: 1010, ie. 505 16-bit PCM samples", len(block))
}
result := calcHead(block[0:2])
for i := 2; i < len(block); i++ {
if (i+1)%4 == 0 {
sample2 := EncodeSample(int16(binary.LittleEndian.Uint16(block[i-1 : i+1])))
sample := EncodeSample(int16(binary.LittleEndian.Uint16(block[i+1 : i+3])))
result = append(result, byte((sample<<4)|sample2))
}
}
return result, nil
}