av/codec/h264/h264dec/sps.go

699 lines
25 KiB
Go
Raw Normal View History

package h264dec
import (
"bytes"
"fmt"
2019-07-19 09:14:45 +03:00
"bitbucket.org/ausocean/av/codec/h264/h264dec/bits"
"github.com/pkg/errors"
)
var (
DefaultScalingMatrix4x4 = [][]int{
{6, 13, 20, 28, 13, 20, 28, 32, 20, 28, 32, 37, 28, 32, 37, 42},
{10, 14, 20, 24, 14, 20, 24, 27, 20, 24, 27, 30, 24, 27, 30, 34},
}
DefaultScalingMatrix8x8 = [][]int{
{6, 10, 13, 16, 18, 23, 25, 27,
10, 11, 16, 18, 23, 25, 27, 29,
13, 16, 18, 23, 25, 27, 29, 31,
16, 18, 23, 25, 27, 29, 31, 33,
18, 23, 25, 27, 29, 31, 33, 36,
23, 25, 27, 29, 31, 33, 36, 38,
25, 27, 29, 31, 33, 36, 38, 40,
27, 29, 31, 33, 36, 38, 40, 42},
{9, 13, 15, 17, 19, 21, 22, 24,
13, 13, 17, 19, 21, 22, 24, 25,
15, 17, 19, 21, 22, 24, 25, 27,
17, 19, 21, 22, 24, 25, 27, 28,
19, 21, 22, 24, 25, 27, 28, 30,
21, 22, 24, 25, 27, 28, 30, 32,
22, 24, 25, 27, 28, 30, 32, 33,
24, 25, 27, 28, 30, 32, 33, 35},
}
Default4x4IntraList = []int{6, 13, 13, 20, 20, 20, 38, 38, 38, 38, 32, 32, 32, 37, 37, 42}
Default4x4InterList = []int{10, 14, 14, 20, 20, 20, 24, 24, 24, 24, 27, 27, 27, 30, 30, 34}
Default8x8IntraList = []int{
6, 10, 10, 13, 11, 13, 16, 16, 16, 16, 18, 18, 18, 18, 18, 23,
23, 23, 23, 23, 23, 25, 25, 25, 25, 25, 25, 25, 27, 27, 27, 27,
27, 27, 27, 27, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31,
31, 33, 33, 33, 33, 33, 36, 36, 36, 36, 38, 38, 38, 40, 40, 42}
Default8x8InterList = []int{
9, 13, 13, 15, 13, 15, 17, 17, 17, 17, 19, 19, 19, 19, 19, 21,
21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 24, 24, 24, 24,
24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 27, 27, 27, 27, 27,
27, 28, 28, 28, 28, 28, 30, 30, 30, 30, 32, 32, 32, 33, 33, 35}
ScalingList4x4 = map[int][]int{
0: Default4x4IntraList,
1: Default4x4IntraList,
2: Default4x4IntraList,
3: Default4x4InterList,
4: Default4x4InterList,
5: Default4x4InterList,
6: Default8x8IntraList,
7: Default8x8InterList,
8: Default8x8IntraList,
9: Default8x8InterList,
10: Default8x8IntraList,
11: Default8x8InterList,
}
ScalingList8x8 = ScalingList4x4
)
// SPS describes a sequence parameter set as defined by section 7.3.2.1.1 in
// the Specifications.
// For semantics see section 7.4.2.1. Comments for fields are excerpts from
// section 7.4.2.1.
type SPS struct {
// pofile_idx and level_idc indicate the profile and level to which the
// coded video sequence conforms.
Profile, LevelIDC uint8
// The constraint_setx_flag flags specify the constraints defined in A.2 for
// which this stream conforms.
Constraint0 bool
Constraint1 bool
Constraint2 bool
Constraint3 bool
Constraint4 bool
Constraint5 bool
// seq_parameter_set_id identifies this sequence parameter set, and can then
// be reference by the picture parameter set. The seq_parameter_set_id is
// in the range of 0 to 30 inclusive.
SPSID uint64
// chroma_format_idc specifies the chroma sampling relative to the luma
// sampling as specified in caluse 6.2. Range of chroma_format_idc is in
// from 0 to 3 inclusive.
ChromaFormatIDC uint64
// separate_color_plane_flag if true specifies that the three components of
// the 4:4:4 chroma formta are coded separately.
SeparateColorPlaneFlag bool
// bit_depth_luma_minus8 specifies the luma array sample bit depth and the
// luma quantisation parameter range offset QpBdOffset_y (eq 7-3 and 7-4).
BitDepthLumaMinus8 uint64
// bit_depth_luma_minus8 specifies the chroma array sample bit depth and the
// chroma quantisation parameter range offset QpBdOffset_c (eq 7-3 and 7-4).
BitDepthChromaMinus8 uint64
// qpprime_y_zero_transform_bypass_flag equal to 1 specifies that, when QP Y
// is equal to 0, a transform bypass operation for the transform coefficient
// decoding process and picture construction process prior to deblocking
// filter process as specified in clause 8.5 shall be applied.
QPPrimeYZeroTransformBypassFlag bool
// seq_scaling_matrix_present_flag equal to 1 specifies that
// seq_scaling_list_present_flag[ i ] are present. When 0 they are not present
// and the sequence-level scaling lists specified by Flat_4x4_16 and
// Flat_8x8_16 shall be inferred.
SeqScalingMatrixPresentFlag bool
// seq_scaling_lit_present_flag[i] specifics whether the syntax structure for
// scaling list i is present. If 1 then present, otherwise not, and scaling
// list for i is inferred as per rule set A in table 7-2.
SeqScalingListPresentFlag []bool
// The 4x4 sequence scaling lists for each i.
ScalingList4x4 [][]uint64
// Flag to indicate for a 4x4 scaling list, if we use the default.
UseDefaultScalingMatrix4x4Flag []bool
// The 8x8 sequence scaling lists for each i.
ScalingList8x8 [][]uint64
// Flag to indicate for a 8x8 scaling list, if we use the default.
UseDefaultScalingMatrix8x8Flag []bool
// log2_max_frame_num_minus4 allows for derivation of MaxFrameNum using eq 7-10.
Log2MaxFrameNumMinus4 uint64
// pic_order_cnt_type specifiess the method to decode picture order count.
PicOrderCountType uint64
// log2_max_pic_order_cnt_lsb_minus4 allows for the dreivation of
// MaxPicOrderCntLsb using eq 7-11.
Log2MaxPicOrderCntLSBMin4 uint64
// delta_pic_order_always_zero_flag if true indicates delta_pic_order_cnt[0]
// and delta_pic_order_cnt[1].
DeltaPicOrderAlwaysZeroFlag bool
// offset_for_non_ref_pic is used to calculate the picture order count of a
// non-reference picture as specified in clause 8.2.1.
OffsetForNonRefPic int64
// offset_for_top_to_bottom_field is used to calculate the picture order count
// of a bottom field as specified in clause 8.2.1.
OffsetForTopToBottomField int64
// num_ref_frames_in_pic_order_cnt_cycle is used in the decoding process for
// picture order count as specified in clause 8.2.1.
NumRefFramesInPicOrderCntCycle uint64
// offset_for_ref_frame[ i ] is an element of a list of
// num_ref_frames_in_pic_order_cnt_cycle values used in the decoding process
// for picture order count as specified in clause 8.2.1.
OffsetForRefFrameList []int
// max_num_ref_frames specifies the max number of short-term and long-term
// reference frames, complementary reference field pairs, and non-paired
// reference fields that may be used by the decoding process for inter prediction.
MaxNumRefFrames uint64
// gaps_in_frame_num_value_allowed_flag specifies the allowed values of
// frame_num as specified in clause 7.4.3 and the decoding process in case of
// an inferred gap between values of frame_num as specified in clause 8.2.5.2.
GapsInFrameNumValueAllowed bool
// pic_width_in_mbs_minus1 plus 1 specifies the width of each decode picutre
// in units of macroblocks. See eq 7-13.
PicWidthInMBSMinus1 uint64
// pic_height_in_map_units_minus1 plus 1 specifies the height in slice group
// map units of a decoded frame or field. See eq 7-16.
PicHeightInMapUnitsMinus1 uint64
// frame_mbs_only_flag if 0 coded pictures of the coded video sequence may be
// coded fields or coded frames. If 1 every coded picture of the coded video
// sequence is a coded frame containing only frame macroblocks.
FrameMBSOnlyFlag bool
// mb_adaptive_frame_field_flag if 0 specifies no switching between
// frame and field macroblocks within a picture. If 1 specifies the possible
// use of switching between frame and field macroblocks within frames.
MBAdaptiveFrameFieldFlag bool
// direct_8x8_inference_flag specifies the method used in the derivation
// process for luma motion vectors for B_Skip, B_Direct_16x16 and B_Direct_8x8
// as specified in clause 8.4.1.2.
Direct8x8InferenceFlag bool
// frame_cropping_flag if 1 then frame cropping offset parameters are next in
// the sequence parameter set. If 0 they are not.
FrameCroppingFlag bool
// frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset,
// frame_crop_bottom_offset specify the samples of the pictures in the coded
// video sequence that are output from the decoding process, in terms of a
// rectangular region specified in frame coordinates for output.
FrameCropLeftOffset uint64
FrameCropRightOffset uint64
FrameCropTopOffset uint64
FrameCropBottomOffset uint64
// vui_parameters_present_flag if 1 the vui_parameters() syntax structure is
// present, otherwise it is not.
VUIParametersPresentFlag bool
// The vui_parameters() syntax structure specified in appendix E.
VUIParameters *VUIParameters
}
// NewSPS parses a sequence parameter set raw byte sequence from br following
// the syntax structure specified in section 7.3.2.1.1, and returns as a new
// SPS.
func NewSPS(rbsp []byte, showPacket bool) (*SPS, error) {
logger.Printf("debug: SPS RBSP %d bytes %d bits\n", len(rbsp), len(rbsp)*8)
logger.Printf("debug: \t%#v\n", rbsp[0:8])
sps := SPS{}
br := bits.NewBitReader(bytes.NewReader(rbsp))
r := newFieldReader(br)
sps.Profile = uint8(r.readBits(8))
sps.Constraint0 = r.readBits(1) == 1
sps.Constraint1 = r.readBits(1) == 1
sps.Constraint2 = r.readBits(1) == 1
sps.Constraint3 = r.readBits(1) == 1
sps.Constraint4 = r.readBits(1) == 1
sps.Constraint5 = r.readBits(1) == 1
r.readBits(2) // 2 reserved bits.
sps.LevelIDC = uint8(r.readBits(8))
sps.SPSID = r.readUe()
sps.ChromaFormatIDC = r.readUe()
// This should be done only for certain ProfileIDC:
isProfileIDC := []int{100, 110, 122, 244, 44, 83, 86, 118, 128, 138, 139, 134, 135}
// SpecialProfileCase1
if isInList(isProfileIDC, int(sps.Profile)) {
if sps.ChromaFormatIDC == chroma444 {
// TODO: should probably deal with error here.
sps.SeparateColorPlaneFlag = r.readBits(1) == 1
}
sps.BitDepthLumaMinus8 = r.readUe()
sps.BitDepthChromaMinus8 = r.readUe()
sps.QPPrimeYZeroTransformBypassFlag = r.readBits(1) == 1
sps.SeqScalingMatrixPresentFlag = r.readBits(1) == 1
if sps.SeqScalingMatrixPresentFlag {
max := 12
if sps.ChromaFormatIDC != chroma444 {
max = 8
}
logger.Printf("debug: \tbuilding Scaling matrix for %d elements\n", max)
for i := 0; i < max; i++ {
sps.SeqScalingListPresentFlag = append(sps.SeqScalingListPresentFlag, r.readBits(1) == 1)
if sps.SeqScalingListPresentFlag[i] {
if i < 6 {
scalingList(
br,
ScalingList4x4[i],
16,
DefaultScalingMatrix4x4[i])
// 4x4: Page 75 bottom
} else {
// 8x8 Page 76 top
scalingList(
br,
ScalingList8x8[i],
64,
DefaultScalingMatrix8x8[i-6])
}
}
}
}
} // End SpecialProfileCase1
// showSPS()
// return sps
// Possibly wrong due to no scaling list being built
sps.Log2MaxFrameNumMinus4 = r.readUe()
sps.PicOrderCountType = r.readUe()
if sps.PicOrderCountType == 0 {
sps.Log2MaxPicOrderCntLSBMin4 = r.readUe()
} else if sps.PicOrderCountType == 1 {
sps.DeltaPicOrderAlwaysZeroFlag = r.readBits(1) == 1
sps.OffsetForNonRefPic = int64(r.readSe())
sps.OffsetForTopToBottomField = int64(r.readSe())
sps.NumRefFramesInPicOrderCntCycle = r.readUe()
for i := 0; i < int(sps.NumRefFramesInPicOrderCntCycle); i++ {
sps.OffsetForRefFrameList = append(sps.OffsetForRefFrameList, r.readSe())
}
}
sps.MaxNumRefFrames = r.readUe()
sps.GapsInFrameNumValueAllowed = r.readBits(1) == 1
sps.PicWidthInMBSMinus1 = r.readUe()
sps.PicHeightInMapUnitsMinus1 = r.readUe()
sps.FrameMBSOnlyFlag = r.readBits(1) == 1
if !sps.FrameMBSOnlyFlag {
sps.MBAdaptiveFrameFieldFlag = r.readBits(1) == 1
}
sps.Direct8x8InferenceFlag = r.readBits(1) == 1
sps.FrameCroppingFlag = r.readBits(1) == 1
if sps.FrameCroppingFlag {
sps.FrameCropLeftOffset = r.readUe()
sps.FrameCropRightOffset = r.readUe()
sps.FrameCropTopOffset = r.readUe()
sps.FrameCropBottomOffset = r.readUe()
}
sps.VUIParametersPresentFlag = r.readBits(1) == 1
if sps.VUIParametersPresentFlag {
} // End VuiParameters Annex E.1.1
return &sps, nil
}
// SPS describes a sequence parameter set as defined by section E.1.1 in the
// Specifications.
// Semantics for fields are define in section E.2.1. Comments on fields are
// excerpts from the this section.
type VUIParameters struct {
// aspect_ratio_info_present_flag if 1 then aspect_ratio_idc is present,
// otherwsise is not.
AspectRatioInfoPresentFlag bool
// aspect_ratio_idc specifies the value of sample aspect ratio of the luma samples.
AspectRatioIDC uint8
// sar_width indicates the horizontal size of the sample aspect ratio (in
// arbitrary units).
SARWidth uint32
// sar_height indicates the vertical size of the sample aspect ratio (in the
// same arbitrary units as sar_width).
SARHeight uint32
// overscan_info_present_flag if 1 then overscan_appropriate_flag is present,
// otherwise if 0, then the display method for the video signal is unspecified.
OverscanInfoPresentFlag bool
// overscan_appropriate_flag if 1 then the cropped decoded pictures output
// are suitable for display using overscan, othersise if 0, then the cropped
// decoded pictures output should not be displayed using overscan.
OverscanAppropriateFlag bool
// video_signal_type_present_flag equal to 1 specifies that video_format,
// video_full_range_flag and colour_description_present_flag are present,
// otherwise if 0, then they are not present.
VideoSignalTypePresentFlag bool
// video_format indicates the representation of the pictures as specified in
// Table E-2, before being coded in accordance with this Recommendation |
// International Standard.
VideoFormat uint8
// video_full_range_flag indicates the black level and range of the luma and
// chroma signals as derived from E_Y, E_PB, and E_PR or E_R, E_G,
// and E_B real-valued component signals.
VideoFullRangeFlag bool
// colour_description_present_flag if 1 specifies that colour_primaries,
// transfer_characteristics and matrix_coefficients are present, otherwise if
// 0 then they are not present.
ColorDescriptionPresentFlag bool
// colour_primaries indicates the chromaticity coordinates of the source
// primaries as specified in Table E-3 in terms of the CIE 1931 definition of
// x and y as specified by ISO 11664-1.
ColorPrimaries uint8
// transfer_characteristics either indicates the reference opto-electronic
// transfer characteristic function of the source picture, or indicates the
// inverse of the reference electro-optical transfer characteristic function.
TransferCharacteristics uint8
// matrix_coefficients describes the matrix coefficients used in deriving luma
// and chroma signals from the green, blue, and red, or Y, Z, and X primaries,
// as specified in Table E-5.
MatrixCoefficients uint8
// chroma_loc_info_present_flag if 1 specifies that chroma_sample_loc_type_top_field
// and chroma_sample_loc_type_bottom_field are present, otherwise if 0,
// they are not present.
ChromaLocInfoPresentFlag bool
// chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field
// specify the location of chroma samples.
ChromaSampleLocTypeTopField, ChromaSampleLocTypeBottomField uint64
// timing_info_present_flag if 1 specifies that num_units_in_tick, time_scale
// and fixed_frame_rate_flag are present in the bitstream, otherwise if 0,
// they are not present.
TimingInfoPresentFlag bool
// num_units_in_tick is the number of time units of a clock operating at the
// frequency time_scale Hz that corresponds to one increment (called a clock
// tick) of a clock tick counter.
NumUnitsInTick uint32
// time_scale is the number of time units that pass in one second.
TimeScale uint32
// fixed_frame_rate_flag if 1 indicates that the temporal distance
// between the HRD output times of any two consecutive pictures in output
// order is constrained as follows. fixed_frame_rate_flag equal to 0 indicates
// that no such constraints apply to the temporal distance between the HRD
// output times of any two consecutive pictures in output order.
FixedFrameRateFlag bool
// nal_hrd_parameters_present_flag if 1 then NAL HRD parameters (pertaining to
// Type II bitstream conformance) are present, otherwise if 0, then they
// are not present.
NALHRDParametersPresentFlag bool
// The nal_hrd_parameters() syntax structure as specified in section E.1.2.
NALHRDParameters *HRDParameters
// vcl_hrd_parameters_present_flag if 1 specifies that VCL HRD parameters
// (pertaining to all bitstream conformance) are present, otherwise if 0, then
// they are not present.
VCLHRDParametersPresentFlag bool
// The vcl_nal_hrd_parameters() syntax structure as specified in section E.1.2.
VCLHRDParameters *HRDParameters
// low_delay_hrd_flag specifies the HRD operational mode as specified in Annex C.
LowDelayHRDFlag bool
// pic_struct_present_flag if 1 then picture timing SEI messages (clause D.2.3)
// are present that include the pic_struct syntax element, otherwise if 0, then
// not present.
PicStructPresentFlag bool
// bitstream_restriction_flag if 1, then the following coded video sequence
// bitstream restriction parameters are present, otherwise if 0, then they are
// not present.
BitstreamRestrictionFlag bool
// motion_vectors_over_pic_boundaries_flag if 0 then no sample outside the
// picture boundaries and no sample at a fractional sample position for which
// the sample value is derived using one or more samples outside the picture
// boundaries is used for inter prediction of any sample, otherwise if 1,
// indicates that one or more samples outside picture boundaries may be used
// in inter prediction.
MotionVectorsOverPicBoundariesFlag bool
// max_bytes_per_pic_denom indicates a number of bytes not exceeded by the sum
// of the sizes of the VCL NAL units associated with any coded picture in the
// coded video sequence.
MaxBytesPerPicDenom uint64
// max_bits_per_mb_denom indicates an upper bound for the number of coded bits
// of macroblock_layer() data for any macroblock in any picture of the coded
// video sequence.
MaxBitsPerMBDenom uint64
// log2_max_mv_length_horizontal and log2_max_mv_length_vertical indicate the
// maximum absolute value of a decoded horizontal and vertical motion vector
// component, respectively, in 14 luma sample units, for all pictures in the
// coded video sequence.
Log2MaxMVLengthHorizontal, Log2MaxMVLengthVertical uint64
// max_num_reorder_frames indicates an upper bound for the number of frames
// buffers, in the decoded picture buffer (DPB), that are required for storing
// frames, complementary field pairs, and non-paired fields before output.
MaxNumReorderFrames uint64
// max_dec_frame_buffering specifies the required size of the HRD decoded
// picture buffer (DPB) in units of frame buffers.
MaxDecFrameBuffering uint64
}
// NewVUIParameters parses video usability information parameters from br
// following the syntax structure specified in section E.1.1, and returns as a
// new VUIParameters.
func NewVUIParameters(br *bits.BitReader) (*VUIParameters, error) {
p := &VUIParameters{}
r := newFieldReader(br)
p.AspectRatioInfoPresentFlag = r.readBits(1) == 1
if p.AspectRatioInfoPresentFlag {
p.AspectRatioIDC = uint8(r.readBits(8))
EXTENDED_SAR := 999
if int(p.AspectRatioIDC) == EXTENDED_SAR {
p.SARWidth = uint32(r.readBits(16))
p.SARHeight = uint32(r.readBits(16))
}
}
p.OverscanInfoPresentFlag = r.readBits(1) == 1
if p.OverscanInfoPresentFlag {
p.OverscanAppropriateFlag = r.readBits(1) == 1
}
p.VideoSignalTypePresentFlag = r.readBits(1) == 1
if p.VideoSignalTypePresentFlag {
p.VideoFormat = uint8(r.readBits(3))
}
if p.VideoSignalTypePresentFlag {
p.VideoFullRangeFlag = r.readBits(1) == 1
p.ColorDescriptionPresentFlag = r.readBits(1) == 1
if p.ColorDescriptionPresentFlag {
p.ColorPrimaries = uint8(r.readBits(8))
p.TransferCharacteristics = uint8(r.readBits(8))
p.MatrixCoefficients = uint8(r.readBits(8))
}
}
p.ChromaLocInfoPresentFlag = r.readBits(1) == 1
if p.ChromaLocInfoPresentFlag {
p.ChromaSampleLocTypeTopField = uint64(r.readUe())
p.ChromaSampleLocTypeBottomField = uint64(r.readUe())
}
p.TimingInfoPresentFlag = r.readBits(1) == 1
if p.TimingInfoPresentFlag {
p.NumUnitsInTick = uint32(r.readBits(32))
p.TimeScale = uint32(r.readBits(32))
p.FixedFrameRateFlag = r.readBits(1) == 1
}
p.NALHRDParametersPresentFlag = r.readBits(1) == 1
var err error
if p.NALHRDParametersPresentFlag {
p.NALHRDParameters, err = NewHRDParameters(br)
if err != nil {
return nil, errors.Wrap(err, "could not get hrdParameters")
}
}
p.VCLHRDParametersPresentFlag = r.readBits(1) == 1
if p.VCLHRDParametersPresentFlag {
p.VCLHRDParameters, err = NewHRDParameters(br)
if err != nil {
return nil, errors.Wrap(err, "could not get hrdParameters")
}
}
if p.NALHRDParametersPresentFlag || p.VCLHRDParametersPresentFlag {
p.LowDelayHRDFlag = r.readBits(1) == 1
}
p.PicStructPresentFlag = r.readBits(1) == 1
p.BitstreamRestrictionFlag = r.readBits(1) == 1
if p.BitstreamRestrictionFlag {
p.MotionVectorsOverPicBoundariesFlag = r.readBits(1) == 1
p.MaxBytesPerPicDenom = r.readUe()
p.MaxBitsPerMBDenom = r.readUe()
p.Log2MaxMVLengthHorizontal = r.readUe()
p.Log2MaxMVLengthVertical = r.readUe()
p.MaxNumReorderFrames = r.readUe()
p.MaxDecFrameBuffering = r.readUe()
}
return p, nil
}
// HRDParameters describes hypothetical reference decoder parameters as defined
// by section E.1.2 in the specifications.
// Field semantics are defined in section E.2.2. Comments on fields are excerpts
// from section E.2.2.
type HRDParameters struct {
// cpb_cnt_minus1 plus 1 specifies the number of alternative CPB specifications
// in the bitstream.
CPBCntMinus1 uint64
// bit_rate_scale (together with bit_rate_value_minus1[ SchedSelIdx ])
// specifies the maximum input bit rate of the SchedSelIdx-th CPB.
BitRateScale uint8
// cpb_size_scale (together with cpb_size_value_minus1[ SchedSelIdx ])
// specifies the CPB size of the SchedSelIdx-th CPB.
CPBSizeScale uint8
// bit_rate_value_minus1[ SchedSelIdx ] (together with bit_rate_scale)
//specifies the maximum input bit rate for the SchedSelIdx-th CPB.
BitRateValueMinus1 []uint64
// cpb_size_value_minus1[ SchedSelIdx ] is used together with cpb_size_scale
// to specify the SchedSelIdx-th CPB size.
CPBSizeValueMinus1 []uint64
// cbr_flag[ SchedSelIdx ] equal to 0 specifies that to decode this bitstream
// by the HRD using the SchedSelIdx-th CPB specification, the hypothetical
// stream delivery scheduler (HSS) operates in an intermittent bit rate mode,
// otherwise if 1 specifies that the HSS operates in a constant bit rate mode.
CBRFlag []bool
// initial_cpb_removal_delay_length_minus1 specifies the length in bits of the
// initial_cpb_removal_delay[ SchedSelIdx ] and
// initial_cpb_removal_delay_offset[ SchedSelIdx ] syntax elements of the
// buffering period SEI message.
InitialCPBRemovalDelayLenMinus1 uint8
// cpb_removal_delay_length_minus1 specifies the length in bits of the
// cpb_removal_delay syntax element.
CPBRemovalDelayLenMinus1 uint8
// dpb_output_delay_length_minus1 specifies the length in bits of the
// dpb_output_delay syntax element.
DPBOutputDelayLenMinus1 uint8
// time_offset_length greater than 0 specifies the length in bits of the
// time_offset syntax element.
TimeOffsetLen uint8
}
// NewHRDParameters parses hypothetical reference decoder parameter from br
// following the syntax structure specified in section E.1.2, and returns as a
// new HRDParameters.
func NewHRDParameters(br *bits.BitReader) (*HRDParameters, error) {
h := &HRDParameters{}
r := newFieldReader(br)
h.CPBCntMinus1 = r.readUe()
h.BitRateScale = uint8(r.readBits(4))
h.CPBSizeScale = uint8(r.readBits(4))
// SchedSelIdx E1.2
for sseli := 0; sseli <= int(h.CPBCntMinus1); sseli++ {
h.BitRateValueMinus1 = append(h.BitRateValueMinus1, r.readUe())
h.CPBSizeValueMinus1 = append(h.CPBSizeValueMinus1, r.readUe())
if v, _ := br.ReadBits(1); v == 1 {
h.CBRFlag = append(h.CBRFlag, true)
} else {
h.CBRFlag = append(h.CBRFlag, false)
}
h.InitialCPBRemovalDelayLenMinus1 = uint8(r.readBits(5))
h.CPBRemovalDelayLenMinus1 = uint8(r.readBits(5))
h.DPBOutputDelayLenMinus1 = uint8(r.readBits(5))
h.TimeOffsetLen = uint8(r.readBits(5))
}
if r.err() != nil {
return nil, fmt.Errorf("error from fieldReader: %v", r.err())
}
return h, nil
}
func isInList(l []int, term int) bool {
for _, m := range l {
if m == term {
return true
}
}
return false
}
func scalingList(br *bits.BitReader, scalingList []int, sizeOfScalingList int, defaultScalingMatrix []int) error {
lastScale := 8
nextScale := 8
for i := 0; i < sizeOfScalingList; i++ {
if nextScale != 0 {
deltaScale, err := readSe(br)
if err != nil {
return errors.Wrap(err, "could not parse deltaScale")
}
nextScale = (lastScale + deltaScale + 256) % 256
if i == 0 && nextScale == 0 {
// Scaling list should use the default list for this point in the matrix
_ = defaultScalingMatrix
}
}
if nextScale == 0 {
scalingList[i] = lastScale
} else {
scalingList[i] = nextScale
}
lastScale = scalingList[i]
}
return nil
}