av/codec/pcm/pcm.go

225 lines
6.1 KiB
Go
Raw Normal View History

2022-05-31 08:17:06 +03:00
/*
NAME
pcm.go
DESCRIPTION
pcm.go contains functions for processing pcm.
AUTHOR
Trek Hopton <trek@ausocean.org>
LICENSE
pcm.go is Copyright (C) 2019 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License in gpl.txt.
If not, see [GNU licenses](http://www.gnu.org/licenses).
*/
// Package pcm provides functions for processing and converting pcm audio.
package pcm
import (
"encoding/binary"
"fmt"
"github.com/pkg/errors"
)
// SampleFormat is the format that a PCM Buffer's samples can be in.
type SampleFormat int
// Used to represent an unknown format.
const (
Unknown SampleFormat = -1
)
// Sample formats that we use.
const (
S16_LE SampleFormat = iota
S32_LE
// There are many more:
// https://linux.die.net/man/1/arecord
// https://trac.ffmpeg.org/wiki/audio%20types
)
// BufferFormat contains the format for a PCM Buffer.
type BufferFormat struct {
SFormat SampleFormat
Rate uint
Channels uint
}
// Buffer contains a buffer of PCM data and the format that it is in.
type Buffer struct {
Format BufferFormat
Data []byte
}
// DataSize takes audio attributes describing PCM audio data and returns the size of that data.
func DataSize(rate, channels, bitDepth uint, period float64) int {
s := int(float64(channels) * float64(rate) * float64(bitDepth/8) * period)
return s
}
// Resample takes Buffer c and resamples the pcm audio data to 'rate' Hz and returns a Buffer with the resampled data.
// Notes:
// - Currently only downsampling is implemented and c's rate must be divisible by 'rate' or an error will occur.
// - If the number of bytes in c.Data is not divisible by the decimation factor (ratioFrom), the remaining bytes will
// not be included in the result. Eg. input of length 480002 downsampling 6:1 will result in output length 80000.
2022-05-31 08:17:06 +03:00
func Resample(c Buffer, rate uint) (Buffer, error) {
if c.Format.Rate == rate {
return c, nil
}
if c.Format.Rate < 0 {
return Buffer{}, fmt.Errorf("Unable to convert from: %v Hz", c.Format.Rate)
}
if rate < 0 {
return Buffer{}, fmt.Errorf("Unable to convert to: %v Hz", rate)
}
// The number of bytes in a sample.
var sampleLen int
switch c.Format.SFormat {
case S32_LE:
sampleLen = int(4 * c.Format.Channels)
case S16_LE:
sampleLen = int(2 * c.Format.Channels)
default:
return Buffer{}, fmt.Errorf("Unhandled ALSA format: %v", c.Format.SFormat)
}
inPcmLen := len(c.Data)
// Calculate sample rate ratio ratioFrom:ratioTo.
rateGcd := gcd(rate, c.Format.Rate)
ratioFrom := int(c.Format.Rate / rateGcd)
ratioTo := int(rate / rateGcd)
// ratioTo = 1 is the only number that will result in an even sampling.
if ratioTo != 1 {
return Buffer{}, fmt.Errorf("unhandled from:to rate ratio %v:%v: 'to' must be 1", ratioFrom, ratioTo)
}
newLen := inPcmLen / ratioFrom
resampled := make([]byte, 0, newLen)
// For each new sample to be generated, loop through the respective 'ratioFrom' samples in 'c.Data' to add them
// up and average them. The result is the new sample.
bAvg := make([]byte, sampleLen)
for i := 0; i < newLen/sampleLen; i++ {
var sum int
for j := 0; j < ratioFrom; j++ {
switch c.Format.SFormat {
case S32_LE:
sum += int(int32(binary.LittleEndian.Uint32(c.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)])))
case S16_LE:
sum += int(int16(binary.LittleEndian.Uint16(c.Data[(i*ratioFrom*sampleLen)+(j*sampleLen) : (i*ratioFrom*sampleLen)+((j+1)*sampleLen)])))
}
}
avg := sum / ratioFrom
switch c.Format.SFormat {
case S32_LE:
binary.LittleEndian.PutUint32(bAvg, uint32(avg))
case S16_LE:
binary.LittleEndian.PutUint16(bAvg, uint16(avg))
}
resampled = append(resampled, bAvg...)
}
// Return a new Buffer with resampled data.
return Buffer{
Format: BufferFormat{
Channels: c.Format.Channels,
SFormat: c.Format.SFormat,
Rate: rate,
},
Data: resampled,
}, nil
}
// StereoToMono returns raw mono audio data generated from only the left channel from
// the given stereo Buffer
func StereoToMono(c Buffer) (Buffer, error) {
if c.Format.Channels == 1 {
return c, nil
}
if c.Format.Channels != 2 {
return Buffer{}, fmt.Errorf("Audio is not stereo or mono, it has %v channels", c.Format.Channels)
}
var stereoSampleBytes int
switch c.Format.SFormat {
case S32_LE:
stereoSampleBytes = 8
case S16_LE:
stereoSampleBytes = 4
default:
return Buffer{}, fmt.Errorf("Unhandled sample format %v", c.Format.SFormat)
}
recLength := len(c.Data)
mono := make([]byte, recLength/2)
// Convert to mono: for each byte in the stereo recording, if it's in the first half of a stereo sample
// (left channel), add it to the new mono audio data.
var inc int
for i := 0; i < recLength; i++ {
if i%stereoSampleBytes < stereoSampleBytes/2 {
mono[inc] = c.Data[i]
inc++
}
}
// Return a new Buffer with resampled data.
return Buffer{
Format: BufferFormat{
Channels: 1,
SFormat: c.Format.SFormat,
Rate: c.Format.Rate,
},
Data: mono,
}, nil
}
// gcd is used for calculating the greatest common divisor of two positive integers, a and b.
// assumes given a and b are positive.
func gcd(a, b uint) uint {
for b != 0 {
a, b = b, a%b
}
return a
}
// String returns the string representation of a SampleFormat.
func (f SampleFormat) String() string {
switch f {
case S16_LE:
return "S16_LE"
case S32_LE:
return "S32_LE"
default:
return "Unknown"
}
}
// SFFromString takes a string representing a sample format and returns the corresponding SampleFormat.
func SFFromString(s string) (SampleFormat, error) {
switch s {
case "S16_LE":
return S16_LE, nil
case "S32_LE":
return S32_LE, nil
default:
return Unknown, errors.Errorf("unknown sample format (%s)", s)
}
}