av/rtmp/amf.go

849 lines
24 KiB
Go
Raw Normal View History

/*
NAME
amf.go
DESCRIPTION
See Readme.md
AUTHORS
Saxon Nelson-Milton <saxon@ausocean.org>
Dan Kortschak <dan@ausocean.org>
Jake Lane <jake@ausocean.org>
LICENSE
amf.go is Copyright (C) 2017 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with revid in gpl.txt. If not, see http://www.gnu.org/licenses.
Derived from librtmp under the GNU Lesser General Public License 2.1
Copyright (C) 2005-2008 Team XBMC http://www.xbmc.org
Copyright (C) 2008-2009 Andrej Stepanchuk
Copyright (C) 2009-2010 Howard Chu
*/
2018-08-24 00:17:13 +03:00
package rtmp
/*
#include <stdlib.h>
*/
import "C"
import (
"log"
"unsafe"
)
var (
AMFObj_Invalid C_AMFObject
AMFProp_Invalid = C_AMFObjectProperty{p_type: AMF_INVALID}
)
const (
AMF3_INTEGER_MAX = 268435455
AMF3_INTEGER_MIN = -268435456
)
// unsigned short AMF_DecodeInt16(const char* data);
// amf.c +41
func C_AMF_DecodeInt16(data *byte) uint16 {
c := unsafe.Pointer(data)
return uint16(*(*uint8)(c)<<8 | *(*byte)(incBytePtr(c, 1)))
}
// unsigned int AMF_DecodeInt24(const char* data);
// amf.c +50
func C_AMF_DecodeInt24(data *byte) uint32 {
c := (*[3]byte)(unsafe.Pointer(data))
return (uint32(c[0]) << 16) | (uint32(c[1]) << 8) | uint32(c[2])
/*
// TODO Understand logic and simplify
c := (*uint8)(unsafe.Pointer(data))
dst := uint32(int32(*c) << 16)
dst |= uint32(int32(*((*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(c)) +
(uintptr)(int32(1))*unsafe.Sizeof(*c))))) << 8)
dst |= uint32(int32(*((*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(c)) +
(uintptr)(int32(2))*unsafe.Sizeof(*c))))))
return dst
*/
}
// unsigned int AMF_DeocdeInt32(const char* data);
// amf.c +59
func C_AMF_DecodeInt32(data *byte) uint32 {
c := (*uint8)(data)
val := uint32(
int32(*c)<<24 |
int32(*(*uint8)(incBytePtr(unsafe.Pointer(c), 1)))<<16 |
int32(*(*uint8)(incBytePtr(unsafe.Pointer(c), 2)))<<8 |
int32(*(*uint8)(incBytePtr(unsafe.Pointer(c), 3))))
return uint32(val)
}
// void AMF_DecodeString(const char* data, C_AVal* bv);
// amf.c +68
func C_AMF_DecodeString(data *byte, bv *C_AVal) {
dataPtr := unsafe.Pointer(data)
//bv.av_len = int32(C.AMF_DecodeInt16((*byte)(dataPtr)))
bv.av_len = int32(C_AMF_DecodeInt16((*byte)(dataPtr)))
if bv.av_len > 0 {
bv.av_val = (*byte)(incBytePtr(dataPtr, 2))
} else {
bv.av_val = nil
}
}
// void AMF_DecodeLongString(const char *data, AVal *bv);
// amf.c +75
func C_AMF_DecodeLongString(data *byte, bv *C_AVal) {
bv.av_len = int32(C_AMF_DecodeInt32(data))
if bv.av_len > 0 {
bv.av_val = (*byte)(incBytePtr(unsafe.Pointer(data), 4))
} else {
bv.av_val = nil
}
}
// double AMF_DecodeNumber(const char* data);
// amf.c +82
func C_AMF_DecodeNumber(data *byte) float64 {
var dVal float64
var ci, co *uint8
ci = (*uint8)(unsafe.Pointer(data))
co = (*uint8)(unsafe.Pointer(&dVal))
for i := 0; i < 8; i++ {
(*[_Gi]byte)(unsafe.Pointer(co))[i] = (*[_Gi]byte)(unsafe.Pointer(ci))[7-i]
}
return dVal
}
// int AMF_DecodeBoolean(const char *data);
// amf.c +132
func C_AMF_DecodeBoolean(data *byte) int32 {
if *data != 0 {
return 1
}
return 0
}
// char* AMF_EncodeInt16(char* output, char* outend, short nVal);
// amf.c +138
func C_AMF_EncodeInt16(output *byte, outend *byte, nVal int16) *byte {
outputPtr := unsafe.Pointer(output)
outendPtr := unsafe.Pointer(outend)
if uintptr(outputPtr)+2 > uintptr(outendPtr) {
// length < 2
return nil
}
// Assign output[1]
second := (*byte)(incBytePtr(outputPtr, 1))
*second = (byte)(nVal & 0xff)
// Assign output[0]
*output = (byte)(nVal >> 8)
return (*byte)(incBytePtr(outputPtr, 2))
}
// char* AMF_EncodeInt24(char* output, char* outend, int nVal);
// amf.c +149
func C_AMF_EncodeInt24(output *byte, outend *byte, nVal int32) *byte {
outputPtr := unsafe.Pointer(output)
outendPtr := unsafe.Pointer(outend)
if uintptr(outputPtr)+3 > uintptr(outendPtr) {
// length < 3
return nil
}
// Assign output[2]
third := (*byte)(incBytePtr(outputPtr, 2))
*third = (byte)(nVal & 0xff)
// Assign output[1]
second := (*byte)(incBytePtr(outputPtr, 1))
*second = (byte)(nVal >> 8)
// Assign output[0]
*output = (byte)(nVal >> 16)
return (*byte)(incBytePtr(outputPtr, 3))
}
// char* AMF_EncodeInt32(char* output, char* outend, int nVal);
// amf.c +161
func C_AMF_EncodeInt32(output *byte, outend *byte, nVal int32) *byte {
outputPtr := unsafe.Pointer(output)
outendPtr := unsafe.Pointer(outend)
if uintptr(outputPtr)+4 > uintptr(outendPtr) {
// length < 4
return nil
}
// Assign output[3]
forth := (*byte)(incBytePtr(outputPtr, 3))
*forth = (byte)(nVal & 0xff)
// Assign output[2]
third := (*byte)(incBytePtr(outputPtr, 2))
*third = (byte)(nVal >> 8)
// Assign output[1]
second := (*byte)(incBytePtr(outputPtr, 1))
*second = (byte)(nVal >> 16)
// Assign output[0]
*output = (byte)(nVal >> 24)
return (*byte)(incBytePtr(outputPtr, 4))
}
// char* AMF_EncodeString(char* output, char* outend, const C_AVal* bv);
// amf.c +174
func C_AMF_EncodeString(output *byte, outend *byte, bv *C_AVal) *byte {
outputPtr := unsafe.Pointer(output)
outendPtr := unsafe.Pointer(outend)
if (bv.av_len < 65536 && uintptr(incBytePtr(outputPtr, 1+2+int(bv.av_len))) >
uintptr(outendPtr)) || uintptr(incBytePtr(outputPtr, 1+4+int(bv.av_len))) >
uintptr(outendPtr) {
return nil
}
if bv.av_len < 65536 {
*(*byte)(outputPtr) = AMF_STRING
outputPtr = incBytePtr(outputPtr, 1)
// TODO: port AMF_EncodeInt16
outputPtr = unsafe.Pointer(C_AMF_EncodeInt16((*byte)(outputPtr), (*byte)(
outendPtr), int16(bv.av_len)))
//outputPtr = unsafe.Pointer(C_AMF_EncodeInt16((*byte)(outputPtr),
//(*byte)(outendPtr), (int16)(bv.av_len)))
} else {
*(*byte)(outputPtr) = AMF_LONG_STRING
outputPtr = incBytePtr(outputPtr, 1)
outputPtr = unsafe.Pointer(C_AMF_EncodeInt32((*byte)(outputPtr), (*byte)(
outendPtr), int32(bv.av_len)))
//outputPtr = unsafe.Pointer(C_AMF_EncodeInt32((*byte)(outputPtr),
//(*byte)(outendPtr), (int32)(bv.av_len)))
}
memmove(unsafe.Pointer(outputPtr), unsafe.Pointer(bv.av_val), uintptr(bv.av_len))
//C.memcpy(unsafe.Pointer(outputPtr), unsafe.Pointer(bv.av_val), (C.size_t)(bv.av_len))
outputPtr = incBytePtr(outputPtr, int(bv.av_len))
return (*byte)(outputPtr)
}
// char* AMF_EncodeNumber(char* output, char* outend, double dVal);
// amf.c +199
func C_AMF_EncodeNumber(output *byte, outend *byte, dVal float64) *byte {
if int(uintptr(unsafe.Pointer(output)))+1+8 > int(uintptr(unsafe.Pointer(outend))) {
return nil
}
// TODO: port this
*(*byte)(unsafe.Pointer(output)) = AMF_NUMBER
output = (*byte)(incBytePtr(unsafe.Pointer(output), 1))
// NOTE: here we are assuming little endian for both byte order and float
// word order
var ci, co *uint8
ci = (*uint8)(unsafe.Pointer(&dVal))
co = (*uint8)(unsafe.Pointer(output))
for i := 0; i < 8; i++ {
(*[_Gi]byte)(unsafe.Pointer(co))[i] = (*[_Gi]byte)(unsafe.Pointer(ci))[7-i]
}
return (*byte)(incBytePtr(unsafe.Pointer(output), 8))
}
// char* AMF_EncodeBoolean(char* output, char* outend, int bVal);
// amf.c +260
func C_AMF_EncodeBoolean(output *byte, outend *byte, bVal int) *byte {
if int(uintptr(unsafe.Pointer(output)))+2 > int(uintptr(unsafe.Pointer(outend))) {
return nil
}
*(*byte)(unsafe.Pointer(output)) = AMF_BOOLEAN
output = (*byte)(incBytePtr(unsafe.Pointer(output), 1))
val := byte(0x01)
if bVal == 0 {
val = byte(0x00)
}
*(*byte)(unsafe.Pointer(output)) = val
output = (*byte)(incBytePtr(unsafe.Pointer(output), 1))
return output
}
// char* AMF_EncodeNamedString(char* output, char* outend, const C_AVal* strName, const C_AVal* strValue);
// amf.c +273
func C_AMF_EncodeNamedString(output *byte, outend *byte, strName *C_AVal, strValue *C_AVal) *byte {
if int(uintptr(unsafe.Pointer(output)))+2+int(strName.av_len) > int(uintptr(unsafe.Pointer(outend))) {
return nil
}
output = C_AMF_EncodeInt16(output, outend, int16(strName.av_len))
memmove(unsafe.Pointer(output), unsafe.Pointer(strName.av_val), uintptr(strName.av_len))
output = (*byte)(incBytePtr(unsafe.Pointer(output), int(strName.av_len)))
return C_AMF_EncodeString(output, outend, strValue)
}
// char* AMF_EncodeNamedNumber(char* output, char* outend, const C_AVal* strName, double dVal);
// amf.c +286
func C_AMF_EncodeNamedNumber(output *byte, outend *byte, strName *C_AVal, dVal float64) *byte {
if int(uintptr(unsafe.Pointer(output)))+2+int(strName.av_len) > int(uintptr(unsafe.Pointer(outend))) {
return nil
}
output = C_AMF_EncodeInt16(output, outend, int16(strName.av_len))
memmove(unsafe.Pointer(output), unsafe.Pointer(strName.av_val), uintptr(strName.av_len))
output = (*byte)(incBytePtr(unsafe.Pointer(output), int(strName.av_len)))
return C_AMF_EncodeNumber(output, outend, dVal)
}
// char* AMF_EncodeNamedBoolean(char* output, char* outend, const C_AVal* strname, int bVal);
// amf.c +299
func C_AMF_EncodeNamedBoolean(output *byte, outend *byte, strName *C_AVal, bVal int) *byte {
if int(uintptr(unsafe.Pointer(output)))+2+int(strName.av_len) > int(uintptr(unsafe.Pointer(outend))) {
return nil
}
output = C_AMF_EncodeInt16(output, outend, int16(strName.av_len))
memmove(unsafe.Pointer(output), unsafe.Pointer(strName.av_val), uintptr(strName.av_len))
output = (*byte)(incBytePtr(unsafe.Pointer(output), int(strName.av_len)))
return C_AMF_EncodeBoolean(output, outend, bVal)
}
// void AMFProp_SetName(AMFObjectProperty *prop, AVal *name);
// amf.c +318
func C_AMFProp_SetName(prop *C_AMFObjectProperty, name *C_AVal) {
prop.p_name = *name
}
// double AMFProp_GetNumber(AMFObjectProperty* prop);
// amf.c +330
func C_AMFProp_GetNumber(prop *C_AMFObjectProperty) float64 {
return float64(prop.p_vu.p_number)
}
// void AMFProp_GetString(AMFObjectProperty* prop, AVal* str);
// amf.c +341
func C_AMFProp_GetString(prop *C_AMFObjectProperty, str *C_AVal) {
if prop.p_type == AMF_STRING {
*str = prop.p_vu.p_aval
} else {
*str = AV_empty
}
}
// void AMFProp_GetObject(AMFObjectProperty *prop, AMFObject *obj);
// amf.c +351
func C_AMFProp_GetObject(prop *C_AMFObjectProperty, obj *C_AMFObject) {
if prop.p_type == AMF_OBJECT {
*obj = prop.p_vu.p_object
} else {
*obj = AMFObj_Invalid
}
}
// char* AMFPropEncode(AMFOBjectProperty* prop, char* pBufer, char* pBufEnd);
// amf.c +366
func C_AMF_PropEncode(p *C_AMFObjectProperty, pBuffer *byte, pBufEnd *byte) *byte {
if p.p_type == AMF_INVALID {
return nil
}
if p.p_type != AMF_NULL && int(uintptr(unsafe.Pointer(pBuffer)))+
int(p.p_name.av_len)+2+1 >= int(
uintptr(unsafe.Pointer(pBufEnd))) {
return nil
}
if p.p_type != AMF_NULL && p.p_name.av_len != 0 {
(*[_Gi]byte)(unsafe.Pointer(pBuffer))[0] = byte(p.p_name.av_len >> 8)
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
(*[_Gi]byte)(unsafe.Pointer(pBuffer))[0] = byte(p.p_name.av_len & 0xff)
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
memmove(unsafe.Pointer(pBuffer), unsafe.Pointer(p.p_name.av_val),
uintptr(p.p_name.av_len))
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), int(p.p_name.av_len)))
}
switch p.p_type {
case AMF_NUMBER:
pBuffer = C_AMF_EncodeNumber(pBuffer, pBufEnd, float64(p.p_vu.p_number))
case AMF_BOOLEAN:
val := 0
if p.p_vu.p_number != 0 {
val = 1
}
pBuffer = C_AMF_EncodeBoolean(pBuffer, pBufEnd, val)
case AMF_STRING:
pBuffer = C_AMF_EncodeString(pBuffer, pBufEnd, &p.p_vu.p_aval)
case AMF_NULL:
if uintptr(incBytePtr(unsafe.Pointer(pBuffer), 1)) >= uintptr(unsafe.Pointer(
pBufEnd)) {
return nil
}
*(*byte)(unsafe.Pointer(pBuffer)) = AMF_NULL
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
case AMF_OBJECT:
pBuffer = C_AMF_Encode(&p.p_vu.p_object, pBuffer, pBufEnd)
//pBuffer = (*byte)(unsafe.Pointer(C.AMF_Encode(&p.p_vu.p_object, (*byte)(
//unsafe.Pointer(pBuffer)), (*byte)(unsafe.Pointer(pBufEnd)))))
case AMF_ECMA_ARRAY:
pBuffer = C_AMF_EncodeEcmaArray(&p.p_vu.p_object, pBuffer, pBufEnd)
//pBuffer = (*byte)(unsafe.Pointer(C.AMF_EncodeEcmaArray(&p.p_vu.p_object, (*byte)(unsafe.Pointer(pBuffer)), (*byte)(unsafe.Pointer(pBufEnd)))))
case AMF_STRICT_ARRAY:
//pBuffer = (*byte)(unsafe.Pointer(C.AMF_EncodeArray(&p.p_vu.p_object, (*byte)(unsafe.Pointer(pBuffer)), (*byte)(unsafe.Pointer(pBufEnd)))))
pBuffer = C_AMF_EncodeArray(&p.p_vu.p_object, pBuffer, pBufEnd)
default:
log.Println("C_AMF_PropEncode: invalid type!")
pBuffer = nil
}
return pBuffer
}
// int AMF3ReadInteger(const char *data, int32_t *valp);
// amf.c +426
// TODO test
func C_AMF3ReadInteger(data *byte, valp *int32) int32 {
var i int
var val int32
for i <= 2 {
/* handle first 3 bytes */
if (*[_Gi]byte)(unsafe.Pointer(data))[i]&0x80 != 0 {
/* byte used */
val <<= 7 /* shift up */
val |= int32((*[_Gi]byte)(unsafe.Pointer(data))[i] & 0x7f) /* add bits */
i++
} else {
break
}
}
if i > 2 {
/* use 4th byte, all 8bits */
val <<= 8
val |= int32((*[_Gi]byte)(unsafe.Pointer(data))[3])
/* range check */
if val > AMF3_INTEGER_MAX {
val -= (1 << 29)
}
} else {
/* use 7bits of last unparsed byte (0xxxxxxx) */
val <<= 7
val |= int32((*[_Gi]byte)(unsafe.Pointer(data))[i])
}
*valp = val
if i > 2 {
return 4
}
return int32(i + 1)
}
// int AMF3ReadString(const char *data, AVal *str);
// amf.c +466
func C_AMF3ReadString(data *byte, str *C_AVal) int32 {
var ref int32
// assert elided - we will get a panic if it's nil.
len := C_AMF3ReadInteger(data, &ref)
data = (*byte)(sliceToPtr((*[_Gi]byte)(unsafe.Pointer(data))[len:]))
if ref&0x1 == 0 {
/* reference: 0xxx */
// TODO(kortschak) Logging.
// refIndex := (ref >> 1)
// RTMP_Log(RTMP_LOGDEBUG,
// "%s, string reference, index: %d, not supported, ignoring!",
// __FUNCTION__, refIndex);
str.av_val = nil
str.av_len = 0
return len
} else {
nSize := (ref >> 1)
str.av_val = data
str.av_len = int32(nSize)
return len + nSize
}
return len
}
// int AMFProp_Decode(C_AMFObjectProperty* prop, const char* pBuffer, int nSize, int bDecodeName);
// amf.c +619
func C_AMFProp_Decode(prop *C_AMFObjectProperty, pBuffer *byte, nSize, bDecodeName int32) int32 {
var nOriginalSize int32 = nSize
var nRes int32
prop.p_name.av_len = 0
prop.p_name.av_val = nil
if nSize == 0 || pBuffer == nil {
// TODO use new logger here
// RTMP_Log(RTMP_LOGDEBUG, "%s: Empty buffer/no buffer pointer!", __FUNCTION__);
return -1
}
if bDecodeName != 0 && nSize < 4 {
// at least name (length + at least 1 byte) and 1 byte of data
// TODO use new logger here
// RTMP_Log(RTMP_LOGDEBUG, "%s: Not enough data for decoding with name, less than 4 bytes!",__FUNCTION__);
return -1
}
if bDecodeName != 0 {
nNameSize := C_AMF_DecodeInt16(pBuffer)
if int32(nNameSize) > nSize-2 {
// TODO use new logger here
//RTMP_Log(RTMP_LOGDEBUG, "%s: Name size out of range: namesize (%d) > len (%d) - 2",__FUNCTION__, nNameSize, nSize);
return -1
}
C_AMF_DecodeString(pBuffer, &prop.p_name)
nSize -= int32(2 + nNameSize)
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), int(2+nNameSize)))
}
if nSize == 0 {
return -1
}
nSize--
prop.p_type = (C_AMFDataType)(int32(*pBuffer))
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
switch prop.p_type {
case AMF_NUMBER:
if nSize < 8 {
return -1
}
prop.p_vu.p_number = float64(C_AMF_DecodeNumber(pBuffer))
nSize -= 8
case AMF_BOOLEAN:
panic("AMF_BOOLEAN not supported")
case AMF_STRING:
var nStringSize = C_AMF_DecodeInt16(pBuffer)
if int64(nSize) < int64(nStringSize)+2 {
return -1
}
C_AMF_DecodeString(pBuffer, &prop.p_vu.p_aval)
nSize -= int32(2 + nStringSize)
case AMF_OBJECT:
var nRes int32 = int32(C_AMF_Decode(&prop.p_vu.p_object, pBuffer, nSize, 1))
if nRes == -1 {
return -1
}
nSize -= nRes
case AMF_MOVIECLIP:
// TODO use new logger here
log.Println("AMFProp_Decode: MAF_MOVIECLIP reserved!")
//RTMP_Log(RTMP_LOGERROR, "AMF_MOVIECLIP reserved!");
return -1
case AMF_NULL, AMF_UNDEFINED, AMF_UNSUPPORTED:
prop.p_type = AMF_NULL
case AMF_REFERENCE:
// TODO use new logger here
log.Println("AMFProp_Decode: AMF_REFERENCE not supported!")
//RTMP_Log(RTMP_LOGERROR, "AMF_REFERENCE not supported!");
return -1
case AMF_ECMA_ARRAY:
nSize -= 4
// next comes the rest, mixed array has a final 0x000009 mark and names, so its an object
nRes = C_AMF_Decode(&prop.p_vu.p_object, (*byte)(incBytePtr(
unsafe.Pointer(pBuffer), 4)), nSize, 1)
if nRes == -1 {
return -1
}
nSize -= nRes
case AMF_OBJECT_END:
return -1
case AMF_STRICT_ARRAY:
panic("AMF_STRICT_ARRAY not supported")
case AMF_DATE:
panic("AMF_DATE not supported")
case AMF_LONG_STRING, AMF_XML_DOC:
panic("AMF_LONG_STRING, AMF_XML_DOC not supported")
case AMF_RECORDSET:
// TODO use new logger here
log.Println("AMFProp_Decode: AMF_RECORDSET reserved!")
//RTMP_Log(RTMP_LOGERROR, "AMF_RECORDSET reserved!");
return -1
case AMF_TYPED_OBJECT:
// TODO use new logger here
// RTMP_Log(RTMP_LOGERROR, "AMF_TYPED_OBJECT not supported!")
return -1
case AMF_AVMPLUS:
panic("AMF_AVMPLUS not supported")
default:
// TODO use new logger here
//RTMP_Log(RTMP_LOGDEBUG, "%s - unknown datatype 0x%02x, @%p", __FUNCTION__,
//prop.p_type, pBuffer - 1);
return -1
}
return nOriginalSize - nSize
}
// void AMFProp_Reset(AMFObjectProperty* prop);
// amf.c +875
func C_AMFProp_Reset(prop *C_AMFObjectProperty) {
if prop.p_type == AMF_OBJECT || prop.p_type == AMF_ECMA_ARRAY ||
prop.p_type == AMF_STRICT_ARRAY {
C_AMF_Reset(&prop.p_vu.p_object)
} else {
prop.p_vu.p_aval.av_len = 0
prop.p_vu.p_aval.av_val = nil
}
prop.p_type = AMF_INVALID
}
// char* AMF_Encode(AMFObject* obj, char* pBuffer, char* pBufEnd);
// amf.c +891
func C_AMF_Encode(obj *C_AMFObject, pBuffer *byte, pBufEnd *byte) *byte {
if uintptr(unsafe.Pointer(pBuffer))+uintptr(4) >= uintptr(unsafe.Pointer(pBufEnd)) {
return nil
}
*pBuffer = AMF_OBJECT
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
for i := 0; i < int(obj.o_num); i++ {
res := C_AMF_PropEncode((*C_AMFObjectProperty)(incPtr(unsafe.Pointer(
obj.o_props), i, int(unsafe.Sizeof(*obj.o_props)))), pBuffer, pBufEnd)
if res == nil {
log.Println("C_AMF_Encode: failed to encode property in index")
break
} else {
pBuffer = res
}
}
if uintptr(incBytePtr(unsafe.Pointer(pBuffer), 3)) >= uintptr(unsafe.Pointer(pBufEnd)) {
return nil
}
pBuffer = C_AMF_EncodeInt24(pBuffer, pBufEnd, int32(AMF_OBJECT_END))
return pBuffer
}
// char* AMF_EncodeEcmaArray(AMFObject* obj, char* pBuffer, char* pBufEnd);
// amf.c +924
func C_AMF_EncodeEcmaArray(obj *C_AMFObject, pBuffer *byte, pBufEnd *byte) *byte {
if int(uintptr(unsafe.Pointer(pBuffer)))+4 >= int(uintptr(unsafe.Pointer(pBufEnd))) {
return nil
}
*pBuffer = AMF_ECMA_ARRAY
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
pBuffer = C_AMF_EncodeInt32(pBuffer, pBufEnd, int32(obj.o_num))
for i := 0; i < int(obj.o_num); i++ {
res := C_AMF_PropEncode((*C_AMFObjectProperty)(incPtr(unsafe.Pointer(
obj.o_props), i, int(unsafe.Sizeof(*obj.o_props)))), pBuffer, pBufEnd)
if res == nil {
log.Println("C_AMF_EncodeEcmaArray: failed to encode property!")
break
} else {
pBuffer = res
}
}
if int(uintptr(unsafe.Pointer(pBuffer)))+3 >= int(uintptr(unsafe.Pointer(pBufEnd))) {
return nil
}
pBuffer = C_AMF_EncodeInt24(pBuffer, pBufEnd, AMF_OBJECT_END)
return pBuffer
}
// char* AMF_EncodeArray(AMFObject* obj, char* pBuffer, char* pBufEnd);
// amf.c +959
func C_AMF_EncodeArray(obj *C_AMFObject, pBuffer *byte, pBufEnd *byte) *byte {
if int(uintptr(unsafe.Pointer(pBuffer)))+4 >= int(uintptr(unsafe.Pointer(pBufEnd))) {
return nil
}
*pBuffer = AMF_STRICT_ARRAY
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
pBuffer = C_AMF_EncodeInt32(pBuffer, pBufEnd, int32(obj.o_num))
for i := 0; i < int(obj.o_num); i++ {
res := C_AMF_PropEncode((*C_AMFObjectProperty)(incPtr(unsafe.Pointer(
obj.o_props), i, int(unsafe.Sizeof(*obj.o_props)))), pBuffer, pBufEnd)
if res == nil {
log.Println("C_AMF_EncodeEcmaArray: failed to encode property!")
break
} else {
pBuffer = res
}
}
return pBuffer
}
// int AMF_DecodeArray(AMFObject *obj, const char *pBuffer, int nSize, int nArrayLen, int bDecodeName);
// amf.c +993
func C_AMF_DecodeArray(obj *C_AMFObject, pBuffer *byte, nSize, nArrayLen, bDecodeName int32) int32 {
nOriginalSize := nSize
var bError int32 = 0
obj.o_num = 0
obj.o_props = nil
for nArrayLen > 0 {
var prop C_AMFObjectProperty
var nRes int32
nArrayLen--
if nSize <= 0 {
bError = 1
break
}
nRes = C_AMFProp_Decode(&prop, pBuffer, nSize, bDecodeName)
if nRes == -1 {
bError = 1
break
} else {
nSize -= nRes
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), int(nRes)))
C_AMF_AddProp(obj, &prop)
}
}
if bError != 0 {
return -1
}
return nOriginalSize - nSize
}
// int AMF_Decode(AMFObject *obj, const char* pBuffer, int nSize, int bDecodeName);
// amf.c +1180
func C_AMF_Decode(obj *C_AMFObject, pBuffer *byte, nSize int32, bDecodeName int32) int32 {
var nOriginalSize int32 = nSize
var bError int32 = 0
obj.o_num = 0
obj.o_props = nil
for nSize > 0 {
var prop C_AMFObjectProperty
var nRes int32
if nSize >= 3 && C_AMF_DecodeInt24(pBuffer) == AMF_OBJECT_END {
nSize -= 3
bError = 0
break
}
if bError != 0 {
// TODO use new logger here
log.Println("AMF_Decode: decoding error, ignoring bytes until next known pattern!")
nSize--
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), 1))
continue
}
// TODO port AMFProp_Decode
nRes = int32(C_AMFProp_Decode(&prop, (*byte)(unsafe.Pointer(pBuffer)),
int32(nSize), int32(bDecodeName)))
// nRes = int32(C.AMFProp_Decode(&prop, (*byte)(unsafe.Pointer(pBuffer)),
// int32(nSize), int32(bDecodeName)))
if nRes == -1 {
bError = 1
break
} else {
nSize -= nRes
if nSize < 0 {
bError = 1
break
}
pBuffer = (*byte)(incBytePtr(unsafe.Pointer(pBuffer), int(nRes)))
C_AMF_AddProp(obj, &prop)
}
}
if bError != 0 {
return -1
}
return nOriginalSize - nSize
}
// void AMF_AddProp(AMFObject* obj, const AMFObjectProperty* prop);
// amf.c + 1234
func C_AMF_AddProp(obj *C_AMFObject, prop *C_AMFObjectProperty) {
if (obj.o_num & 0x0f) == 0 {
//obj.o_props = (*C_AMFObjectProperty)(realloc(unsafe.Pointer(obj.o_props),
//uint32(int(obj.o_num+16)*int(unsafe.Sizeof(*obj.o_props)))))
obj.o_props = (*C_AMFObjectProperty)(C.realloc(unsafe.Pointer(obj.o_props),
C.size_t(int(obj.o_num+16)*int(unsafe.Sizeof(*obj.o_props)))))
}
memmove(unsafe.Pointer(&(*(*C_AMFObjectProperty)(incPtr(
unsafe.Pointer(obj.o_props), int(obj.o_num), int(unsafe.Sizeof(*obj.o_props)))))),
unsafe.Pointer(prop), unsafe.Sizeof(*obj.o_props))
obj.o_num++
}
// AMFObjectProperty* AMF_GetProp(AMFObject *obj, const AVal* name, int nIndex);
// amf.c + 1249
func C_AMF_GetProp(obj *C_AMFObject, name *C_AVal, nIndex int32) *C_AMFObjectProperty {
if nIndex >= 0 {
if nIndex < int32(obj.o_num) {
return &(*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props),
int(nIndex), int(unsafe.Sizeof(*obj.o_props)))))
//return &obj.o_props[nIndex]
}
} else {
var n int32
for n = 0; n < int32(obj.o_num); n++ {
if C_AVMATCH(&(*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props),
int(n), int(unsafe.Sizeof(*obj.o_props))))).p_name, name) != 0 {
return &(*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props),
int(n), int(unsafe.Sizeof(*obj.o_props)))))
}
}
}
return (*C_AMFObjectProperty)(&AMFProp_Invalid)
}
// void AMF_Reset(AMFObject* obj);
// amf.c +1282
func C_AMF_Reset(obj *C_AMFObject) {
var n int32
for n = 0; n < int32(obj.o_num); n++ {
C_AMFProp_Reset(&(*(*C_AMFObjectProperty)(incPtr(unsafe.Pointer(obj.o_props),
int(n), int(unsafe.Sizeof(*obj.o_props))))))
}
//C.free(unsafe.Pointer(obj.o_props))
obj.o_props = nil
obj.o_num = 0
}
/*
// void AMF3CD_AddProp(AMF3ClassDef *cd, AVal *prop);
// amf.c +1298
func AMF3CD_AddProp(cd *C.AMF3ClassDef, prop *C_AVal) {
if cd.cd_num&0x0f == 0 {
cd.cd_props = (*C_AVal)(realloc(unsafe.Pointer(cd.cd_props), int(uintptr(cd.cd_num+16)*unsafe.Sizeof(C_AVal{}))))
}
*(*C_AVal)(incPtr(unsafe.Pointer(cd.cd_props), int(cd.cd_num), int(unsafe.Sizeof(C_AVal{})))) = *prop
cd.cd_num++
}
*/