2022-01-06 06:25:40 +03:00
|
|
|
/*
|
|
|
|
DESCRIPTION
|
|
|
|
Testing functions for the turbidity sensor using images from
|
|
|
|
previous experiment.
|
|
|
|
|
|
|
|
AUTHORS
|
|
|
|
Russell Stanley <russell@ausocean.org>
|
|
|
|
|
|
|
|
LICENSE
|
|
|
|
Copyright (C) 2020 the Australian Ocean Lab (AusOcean)
|
|
|
|
|
|
|
|
It is free software: you can redistribute it and/or modify them
|
|
|
|
under the terms of the GNU General Public License as published by the
|
|
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
|
|
option) any later version.
|
|
|
|
|
|
|
|
It is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
in gpl.txt. If not, see http://www.gnu.org/licenses.
|
|
|
|
*/
|
|
|
|
|
|
|
|
package main
|
|
|
|
|
|
|
|
import (
|
|
|
|
"fmt"
|
|
|
|
"testing"
|
|
|
|
|
|
|
|
"gocv.io/x/gocv"
|
|
|
|
)
|
|
|
|
|
|
|
|
const (
|
|
|
|
nImages = 13 // Number of images to test. (Max 13)
|
|
|
|
nSamples = 10 // Number of samples for each image. (Max 10)
|
|
|
|
increment = 2.5
|
|
|
|
)
|
|
|
|
|
|
|
|
func TestImages(t *testing.T) {
|
|
|
|
// Load template and standard image.
|
|
|
|
template := gocv.IMRead("images/template.jpg", gocv.IMReadGrayScale)
|
|
|
|
standard := gocv.IMRead("images/default.jpg", gocv.IMReadGrayScale)
|
|
|
|
|
|
|
|
imgs := make([][]gocv.Mat, nImages)
|
|
|
|
|
|
|
|
// Load test images.
|
|
|
|
for i := range imgs {
|
|
|
|
imgs[i] = make([]gocv.Mat, nSamples)
|
|
|
|
for j := range imgs[i] {
|
|
|
|
imgs[i][j] = gocv.IMRead(fmt.Sprintf("images/t-%v/000%v.jpg", i, j), gocv.IMReadGrayScale)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Create turbidity sensor.
|
|
|
|
ts, err := NewTurbiditySensor(template, standard, 8, 8, 3, 1.0, 1.0)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
2022-01-06 07:11:35 +03:00
|
|
|
// Create results.
|
2022-01-06 06:25:40 +03:00
|
|
|
results, err := NewResults(nImages)
|
|
|
|
if err != nil {
|
|
|
|
t.Fatal(err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Score each image by calculating the average score from camera burst.
|
|
|
|
for i := range imgs {
|
|
|
|
// Evaluate camera burst.
|
|
|
|
sample_result, err := ts.Evaluate(imgs[i])
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("Evaluation Failed: %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add the average result from camera burst.
|
|
|
|
results.Update(average(sample_result.Saturation), average(sample_result.Contrast), float64(i)*increment, i)
|
|
|
|
}
|
|
|
|
|
|
|
|
// Plot the final results.
|
|
|
|
err = plotResults(results.Turbidity, normalize(results.Saturation), normalize(results.Contrast))
|
|
|
|
if err != nil {
|
|
|
|
t.Fatalf("Plotting Failed: %v", err)
|
|
|
|
}
|
|
|
|
|
|
|
|
t.Logf("Saturation: %v", results.Saturation)
|
|
|
|
t.Logf("Contrast: %v", results.Contrast)
|
|
|
|
}
|