av/container/mts/encoder.go

355 lines
7.5 KiB
Go
Raw Permalink Normal View History

/*
NAME
2018-08-19 14:09:57 +03:00
encoder.go
AUTHOR
Dan Kortschak <dan@ausocean.org>
2018-02-28 16:46:59 +03:00
Saxon Nelson-Milton <saxon@ausocean.org>
LICENSE
2018-08-19 14:09:57 +03:00
encoder.go is Copyright (C) 2017-2018 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with revid in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package mts
import (
"fmt"
"io"
"strconv"
2018-08-18 06:51:50 +03:00
"time"
"bitbucket.org/ausocean/av/codec/h264"
"bitbucket.org/ausocean/av/codec/h264/h264dec"
2019-03-25 04:21:03 +03:00
"bitbucket.org/ausocean/av/container/mts/meta"
"bitbucket.org/ausocean/av/container/mts/pes"
"bitbucket.org/ausocean/av/container/mts/psi"
"bitbucket.org/ausocean/utils/realtime"
)
// Media type values.
// TODO: reference relevant specifications.
const (
H264ID = 27
H265ID = 36
2019-09-12 12:46:11 +03:00
audioStreamID = 0xc0 // ADPCM audio stream ID.
)
// Constants used to communicate which media codec will be packetized.
const (
EncodeH264 = iota
EncodeH265
EncodeAudio
)
// Time-related constants.
const (
// ptsOffset is the offset added to the clock to determine
// the current presentation timestamp.
ptsOffset = 700 * time.Millisecond
// PCRFrequency is the base Program Clock Reference frequency in Hz.
PCRFrequency = 90000
// PTSFrequency is the presentation timestamp frequency in Hz.
PTSFrequency = 90000
// MaxPTS is the largest PTS value (i.e., for a 33-bit unsigned integer).
MaxPTS = (1 << 33) - 1
)
// If we are not using NAL based PSI intervals then we will send PSI every 7 packets.
const psiSendCount = 7
// Some common manifestations of PSI.
var (
// StandardPAT is a minimal PAT.
StandardPAT = psi.PSI{
Pf: 0x00,
Tid: 0x00,
Ssi: true,
Pb: false,
Sl: 0x0d,
Tss: &psi.TSS{
Tide: 0x01,
V: 0,
Cni: true,
Sn: 0,
Lsn: 0,
Sd: &psi.PAT{
Pn: 0x01,
Pmpid: 0x1000,
},
},
}
// Base PMT is a minimal PMT without specific data.
BasePMT = psi.PSI{
Pf: 0x00,
Tid: 0x02,
Ssi: true,
Sl: 0x12,
Tss: &psi.TSS{
Tide: 0x01,
V: 0,
Cni: true,
Sn: 0,
Lsn: 0,
},
}
)
// Meta allows addition of metadata to encoded mts from outside of this pkg.
// See meta pkg for usage.
//
// TODO: make this not global.
var Meta *meta.Data
// This will help us obtain a realtime for timestamp meta encoding.
var RealTime = realtime.NewRealTime()
var (
patTable = StandardPAT.Bytes()
pmtTable []byte
)
2018-02-28 17:42:00 +03:00
// Encoder encapsulates properties of an MPEG-TS generator.
2018-08-19 14:09:57 +03:00
type Encoder struct {
dst io.WriteCloser
2018-08-18 07:06:14 +03:00
2019-04-05 08:58:25 +03:00
clock time.Duration
lastTime time.Time
writePeriod time.Duration
ptsOffset time.Duration
tsSpace [PacketSize]byte
pesSpace [pes.MaxPesSize]byte
2018-08-18 07:06:14 +03:00
continuity map[uint16]byte
nalBasedPSI bool
pktCount int
psiSendCount int
mediaPid uint16
2019-04-05 08:58:25 +03:00
streamID byte
2017-12-13 09:52:18 +03:00
}
// NewEncoder returns an Encoder with the specified media type and rate eg. if a video stream
// calls write for every frame, the rate will be the frame rate of the video.
func NewEncoder(dst io.WriteCloser, rate float64, mediaType int) *Encoder {
var mPid uint16
2019-04-05 08:58:25 +03:00
var sid byte
nbp := true
2019-04-05 08:58:25 +03:00
switch mediaType {
case EncodeAudio:
2019-06-05 17:58:26 +03:00
mPid = AudioPid
2019-04-05 08:58:25 +03:00
sid = audioStreamID
nbp = false
case EncodeH265:
2019-06-05 17:58:26 +03:00
mPid = VideoPid
sid = H265ID
case EncodeH264:
2019-06-05 17:58:26 +03:00
mPid = VideoPid
sid = H264ID
2019-04-05 08:58:25 +03:00
}
pmt := BasePMT
pmt.Tss.Sd = &psi.PMT{
Pcrpid: 0x0100,
Pil: 0,
Essd: &psi.ESSD{
St: byte(sid),
Epid: mPid,
Esil: 0x00,
},
}
pmtTable = pmt.Bytes()
2018-08-19 14:09:57 +03:00
return &Encoder{
dst: dst,
2018-08-18 07:06:14 +03:00
writePeriod: time.Duration(float64(time.Second) / rate),
2019-04-05 08:58:25 +03:00
ptsOffset: ptsOffset,
2018-08-18 07:06:14 +03:00
nalBasedPSI: nbp,
pktCount: 8,
2019-04-05 08:58:25 +03:00
mediaPid: mPid,
streamID: sid,
continuity: map[uint16]byte{
2019-06-05 17:58:26 +03:00
PatPid: 0,
PmtPid: 0,
2019-04-05 08:58:25 +03:00
mPid: 0,
},
}
2018-01-08 04:12:26 +03:00
}
const (
hasPayload = 0x1
hasAdaptationField = 0x2
)
const (
hasDTS = 0x1
hasPTS = 0x2
)
func (e *Encoder) NALBasedPSI(b bool, sendCount int) {
e.nalBasedPSI = b
e.psiSendCount = sendCount
e.pktCount = e.psiSendCount
}
2019-06-03 11:20:48 +03:00
// Write implements io.Writer. Write takes raw video or audio data and encodes into MPEG-TS,
// then sending it to the encoder's io.Writer destination.
2019-04-05 08:58:25 +03:00
func (e *Encoder) Write(data []byte) (int, error) {
if e.nalBasedPSI {
nalType, err := h264.NALType(data)
if err != nil {
return 0, fmt.Errorf("could not get type from NAL unit, failed with error: %v", err)
}
if nalType == h264dec.NALTypeSPS {
err := e.writePSI()
if err != nil {
return 0, err
}
}
} else if e.pktCount >= e.psiSendCount {
e.pktCount = 0
err := e.writePSI()
if err != nil {
return 0, err
}
}
// Prepare PES data.
pesPkt := pes.Packet{
2019-04-05 08:58:25 +03:00
StreamID: e.streamID,
PDI: hasPTS,
PTS: e.pts(),
2019-04-05 08:58:25 +03:00
Data: data,
HeaderLength: 5,
}
2019-04-05 08:58:25 +03:00
2019-01-02 03:06:46 +03:00
buf := pesPkt.Bytes(e.pesSpace[:pes.MaxPesSize])
pusi := true
for len(buf) != 0 {
pkt := Packet{
PUSI: pusi,
2019-04-05 08:58:25 +03:00
PID: uint16(e.mediaPid),
RAI: pusi,
2019-04-05 08:58:25 +03:00
CC: e.ccFor(e.mediaPid),
AFC: hasAdaptationField | hasPayload,
PCRF: pusi,
}
n := pkt.FillPayload(buf)
buf = buf[n:]
if pusi {
// If the packet has a Payload Unit Start Indicator
// flag set then we need to write a PCR.
pkt.PCR = e.pcr()
pusi = false
}
_, err := e.dst.Write(pkt.Bytes(e.tsSpace[:PacketSize]))
if err != nil {
2019-04-05 08:58:25 +03:00
return len(data), err
}
e.pktCount++
}
e.tick()
2019-04-05 08:58:25 +03:00
return len(data), nil
2017-12-13 09:52:18 +03:00
}
// writePSI creates MPEG-TS with pat and pmt tables - with pmt table having updated
2018-12-14 09:16:36 +03:00
// location and time data.
func (e *Encoder) writePSI() error {
2019-01-08 12:12:46 +03:00
// Write PAT.
patPkt := Packet{
PUSI: true,
PID: PatPid,
CC: e.ccFor(PatPid),
AFC: hasPayload,
Payload: psi.AddPadding(patTable),
}
2019-01-12 10:06:35 +03:00
_, err := e.dst.Write(patPkt.Bytes(e.tsSpace[:PacketSize]))
if err != nil {
return err
}
e.pktCount++
pmtTable, err = updateMeta(pmtTable)
if err != nil {
return err
}
2019-01-08 12:12:46 +03:00
// Create mts packet from pmt table.
pmtPkt := Packet{
PUSI: true,
PID: PmtPid,
CC: e.ccFor(PmtPid),
AFC: hasPayload,
Payload: psi.AddPadding(pmtTable),
}
2019-01-12 10:06:35 +03:00
_, err = e.dst.Write(pmtPkt.Bytes(e.tsSpace[:PacketSize]))
if err != nil {
return err
}
e.pktCount++
return nil
}
2018-08-18 07:06:14 +03:00
// tick advances the clock one frame interval.
2018-08-19 14:09:57 +03:00
func (e *Encoder) tick() {
2019-04-05 08:58:25 +03:00
e.clock += e.writePeriod
2018-08-18 07:06:14 +03:00
}
// pts retuns the current presentation timestamp.
2018-08-19 14:09:57 +03:00
func (e *Encoder) pts() uint64 {
return uint64((e.clock + e.ptsOffset).Seconds() * PTSFrequency)
}
2018-08-18 07:06:14 +03:00
// pcr returns the current program clock reference.
2018-08-19 14:09:57 +03:00
func (e *Encoder) pcr() uint64 {
return uint64(e.clock.Seconds() * PCRFrequency)
}
// ccFor returns the next continuity counter for pid.
func (e *Encoder) ccFor(pid uint16) byte {
2018-08-19 14:09:57 +03:00
cc := e.continuity[pid]
const continuityCounterMask = 0xf
e.continuity[pid] = (cc + 1) & continuityCounterMask
return cc
}
// updateMeta adds/updates a metaData descriptor in the given psi bytes using data
// contained in the global Meta struct.
func updateMeta(b []byte) ([]byte, error) {
p := psi.PSIBytes(b)
if RealTime.IsSet() {
Meta.Add("ts", strconv.Itoa(int(RealTime.Get().Unix())))
}
err := p.AddDescriptor(psi.MetadataTag, Meta.Encode())
return []byte(p), err
}
func (e *Encoder) Close() error {
return e.dst.Close()
}