av/cmd/rv/probe.go

246 lines
7.5 KiB
Go
Raw Permalink Normal View History

//go:build !nocv
// +build !nocv
/*
DESCRIPTION
Provides the methods for the turbidity probe using GoCV. Turbidity probe
will collect the most recent frames in a buffer and write the latest sharpness
and contrast scores to the probe.
AUTHORS
Russell Stanley <russell@ausocean.org>
LICENSE
Copyright (C) 2021-2022 the Australian Ocean Lab (AusOcean)
It is free software: you can redistribute it and/or modify them
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
in gpl.txt. If not, see http://www.gnu.org/licenses.
*/
package main
import (
"bytes"
"errors"
"fmt"
"os"
"time"
"gocv.io/x/gocv"
"gonum.org/v1/gonum/stat"
2022-02-09 05:23:18 +03:00
"bitbucket.org/ausocean/av/codec/h264"
"bitbucket.org/ausocean/av/turbidity"
"bitbucket.org/ausocean/utils/logger"
)
// Misc constants.
const (
maxImages = 1 // Max number of images read when evaluating turbidity.
bufferLimit = 20000 // 20KB
trimTolerance = 200 // Number of times trim can be called where no keyframe is found.
transformSize = 9 // Size of the square projective matrix.
)
// Turbidity sensor constants.
const (
k1, k2 = 4, 4 // Block size, must be divisible by the size template with no remainder.
filterSize = 3 // Sobel filter size.
scale = 1.0 // Amount of scale applied to sobel filter values.
alpha = 1.0 // Paramater for contrast equation.
)
// turbidityProbe will hold the latest video data and calculate the sharpness and contrast scores.
// These scores will be sent to netreceiver based on the given delay.
2022-02-08 03:50:20 +03:00
type turbidityProbe struct {
sharpness, contrast float64
delay time.Duration
ticker time.Ticker
ts *turbidity.TurbiditySensor
log logger.Logger
buffer *bytes.Buffer
2022-04-11 02:53:40 +03:00
transform []float64
trimCounter int
2022-02-08 03:50:20 +03:00
}
// NewTurbidityProbe returns a new turbidity probe.
func NewTurbidityProbe(log logger.Logger, delay time.Duration) (*turbidityProbe, error) {
tp := new(turbidityProbe)
tp.log = log
tp.delay = delay
tp.ticker = *time.NewTicker(delay)
tp.buffer = bytes.NewBuffer(*new([]byte))
tp.transform = make([]float64, transformSize)
transformMatrix := floatToMat(tp.transform)
// Create the turbidity sensor.
template := gocv.IMRead("../../turbidity/images/template.jpg", gocv.IMReadGrayScale)
ts, err := turbidity.NewTurbiditySensor(template, transformMatrix, k1, k2, filterSize, scale, alpha, log)
if err != nil {
return nil, fmt.Errorf("failed to create turbidity sensor: %w", err)
}
tp.ts = ts
return tp, nil
}
// Write, reads input h264 frames in the form of a byte stream and writes the the sharpness and contrast
// scores of a video to the the turbidity probe.
func (tp *turbidityProbe) Write(p []byte) (int, error) {
if tp.buffer.Len() == 0 {
// The first entry in the buffer must be a keyframe to speed up decoding.
video, err := h264.Trim(p)
2022-02-21 06:04:02 +03:00
if err != nil {
tp.trimCounter++
if tp.trimCounter >= trimTolerance {
return 0, fmt.Errorf("could not trim h264 within tolerance: %w", err)
}
return len(p), nil
} else {
tp.log.Log(logger.Debug, "trim successful", "keyframe error counter", tp.trimCounter)
tp.trimCounter = 0
2022-02-21 06:04:02 +03:00
}
n, err := tp.buffer.Write(video)
if err != nil {
tp.buffer.Reset()
return 0, fmt.Errorf("could not write trimmed video to buffer: %w", err)
}
tp.log.Log(logger.Debug, "video trimmed, write keyframe complete", "size(bytes)", n)
} else if tp.buffer.Len() < bufferLimit {
// Buffer size is limited to speed up decoding.
_, err := tp.buffer.Write(p)
if err != nil {
tp.buffer.Reset()
return 0, fmt.Errorf("could not write to buffer: %w", err)
}
} else {
// Buffer is large enough to begin turbidity calculation.
select {
case <-tp.ticker.C:
tp.log.Log(logger.Debug, "beginning turbidity calculation")
startTime := time.Now()
err := tp.turbidityCalculation()
if err != nil {
return 0, fmt.Errorf("could not calculate turbidity: %w", err)
}
tp.log.Log(logger.Debug, "finished turbidity calculation", "total duration (sec)", time.Since(startTime).Seconds())
default:
}
2022-02-21 06:04:02 +03:00
}
return len(p), nil
}
func (tp *turbidityProbe) Close() error {
return nil
}
// Update will update the probe and turbidity sensor with the new transformation matrix if it has been changed.
func (tp *turbidityProbe) Update(transformMatrix []float64) error {
if len(transformMatrix) != transformSize {
return errors.New("transformation matrix has incorrect size")
}
for i := range tp.transform {
if tp.transform[i] == transformMatrix[i] {
continue
}
// Update the turbidity sensor with new transformation.
tp.log.Log(logger.Debug, "updating the transformation matrix")
tp.transform = transformMatrix
newTransform := floatToMat(tp.transform)
tp.ts.TransformMatrix = newTransform
return nil
}
tp.log.Log(logger.Debug, "no change to the transformation matrix")
return nil
}
func (tp *turbidityProbe) turbidityCalculation() error {
var imgs []gocv.Mat
img := gocv.NewMat()
// Write byte array to a temp file.
file, err := os.CreateTemp("temp", "video*.h264")
if err != nil {
return fmt.Errorf("failed to create temp file: %w", err)
}
tp.log.Log(logger.Debug, "writing to file", "buffer size(bytes)", tp.buffer.Len())
_, err = file.Write(tp.buffer.Bytes())
if err != nil {
return fmt.Errorf("failed to write to temporary file: %w", err)
}
tp.log.Log(logger.Debug, "write to file success", "buffer size(bytes)", tp.buffer.Len())
tp.buffer.Reset()
// Open the video file.
startTime := time.Now()
vc, err := gocv.VideoCaptureFile(file.Name())
if err != nil {
return fmt.Errorf("failed to open video file: %w", err)
}
tp.log.Log(logger.Debug, "video capture open", "total duration (sec)", time.Since(startTime).Seconds())
// Store each frame until maximum amount is reached.
startTime = time.Now()
for vc.Read(&img) && len(imgs) < maxImages {
imgs = append(imgs, img.Clone())
}
if len(imgs) <= 0 {
return errors.New("no frames found")
}
tp.log.Log(logger.Debug, "read time", "total duration (sec)", time.Since(startTime).Seconds())
// Process video data to get saturation and contrast scores.
res, err := tp.ts.Evaluate(imgs)
if err != nil {
err_ := cleanUp(file.Name(), vc)
if err_ != nil {
2022-03-17 01:51:26 +03:00
return fmt.Errorf("could not clean up: %v, after evaluation error: %w", err_, err)
}
return fmt.Errorf("evaluation error: %w", err)
}
tp.contrast = stat.Mean(res.Contrast, nil)
tp.sharpness = stat.Mean(res.Sharpness, nil)
err = cleanUp(file.Name(), vc)
if err != nil {
return fmt.Errorf("could not clean up: %w", err)
}
return nil
}
2022-02-21 06:04:02 +03:00
func cleanUp(file string, vc *gocv.VideoCapture) error {
err := os.Remove(file)
2022-02-21 06:04:02 +03:00
if err != nil {
return fmt.Errorf("could not remove temp file: %w", err)
2022-02-21 06:04:02 +03:00
}
err = vc.Close()
if err != nil {
return fmt.Errorf("could not close video capture device: %w", err)
2022-02-21 06:04:02 +03:00
}
return nil
2022-02-21 06:04:02 +03:00
}
// floatToMat will convert a slice of 9 floats to a gocv.Mat.
func floatToMat(array []float64) gocv.Mat {
mat := gocv.NewMatWithSize(3, 3, gocv.MatTypeCV64F)
for i := 0; i < mat.Rows(); i++ {
for j := 0; j < mat.Cols(); j++ {
mat.SetDoubleAt(i, j, array[i*mat.Cols()+j])
}
}
return mat
}