ants/README.md

262 lines
7.5 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# ants
<div align="center"><img src="https://user-images.githubusercontent.com/7496278/51748488-8efd2600-20e7-11e9-91f5-1c5b466dcca1.jpg"/></div>
<p align="center">A goroutine pool for Go</p>
[![Build Status][1]][2]
[![codecov][3]][4]
[![goreportcard for panjf2000/ants][5]][6]
[![godoc for panjf2000/ants][7]][8]
[![MIT Licence][9]][10]
[中文](README_ZH.md) | [Project Tutorial](http://blog.taohuawu.club/article/goroutine-pool)
Library `ants` implements a goroutine pool with fixed capacity, managing and recycling a massive number of goroutines, allowing developers to limit the number of goroutines in your concurrent programs.
## Features:
- Automatically managing and recycling a massive number of goroutines.
- Periodically purging overdue goroutines.
- Friendly interfaces: submitting tasks, getting the number of running goroutines, readjusting capacity of pool dynamically, closing pool.
- Handle panic gracefully to prevent programs from crash.
- Efficient in memory usage and it even achieves higher performance than unlimited goroutines in golang.
## Tested in the following Golang versions:
- 1.8.x
- 1.9.x
- 1.10.x
- 1.11.x
- master
## How to install
``` sh
go get -u github.com/panjf2000/ants
```
Or, using glide:
``` sh
glide get github.com/panjf2000/ants
```
## How to use
Just take a imagination that your program starts a massive number of goroutines, from which a vast amount of memory will be consumed. To mitigate that kind of situation, all you need to do is to import `ants` package and submit all your tasks to a default pool with fixed capacity activated when package `ants` has been imported:
``` go
package main
import (
"fmt"
"sync"
"sync/atomic"
"time"
"github.com/panjf2000/ants"
)
var sum int32
func myFunc(i interface{}) {
n := i.(int32)
atomic.AddInt32(&sum, n)
fmt.Printf("run with %d\n", n)
}
func demoFunc() {
time.Sleep(10 * time.Millisecond)
fmt.Println("Hello World!")
}
func main() {
defer ants.Release()
runTimes := 1000
// Use the common pool
var wg sync.WaitGroup
for i := 0; i < runTimes; i++ {
wg.Add(1)
ants.Submit(func() {
demoFunc()
wg.Done()
})
}
wg.Wait()
fmt.Printf("running goroutines: %d\n", ants.Running())
fmt.Printf("finish all tasks.\n")
// Use the pool with a function,
// set 10 to the size of goroutine pool and 1 second for expired duration
p, _ := ants.NewPoolWithFunc(10, func(i interface{}) {
myFunc(i)
wg.Done()
})
defer p.Release()
// Submit tasks
for i := 0; i < runTimes; i++ {
wg.Add(1)
p.Serve(int32(i))
}
wg.Wait()
fmt.Printf("running goroutines: %d\n", p.Running())
fmt.Printf("finish all tasks, result is %d\n", sum)
}
```
## Integrate with http server
```go
package main
import (
"io/ioutil"
"net/http"
"github.com/panjf2000/ants"
)
type Request struct {
Param []byte
Result chan []byte
}
func main() {
pool, _ := ants.NewPoolWithFunc(100, func(payload interface{}) {
request, ok := payload.(*Request)
if !ok {
return
}
reverseParam := func(s []byte) []byte {
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
s[i], s[j] = s[j], s[i]
}
return s
}(request.Param)
request.Result <- reverseParam
})
defer pool.Release()
http.HandleFunc("/reverse", func(w http.ResponseWriter, r *http.Request) {
param, err := ioutil.ReadAll(r.Body)
if err != nil {
http.Error(w, "request error", http.StatusInternalServerError)
}
defer r.Body.Close()
request := &Request{Param: param, Result: make(chan []byte)}
// Throttle the requests traffic with ants pool. This process is asynchronous and
// you can receive a result from the channel defined outside.
if err := pool.Serve(request); err != nil {
http.Error(w, "throttle limit error", http.StatusInternalServerError)
}
w.Write(<-request.Result)
})
http.ListenAndServe(":8080", nil)
}
```
## Submit tasks
Tasks can be submitted by calling `ants.Submit(func())`
```go
ants.Submit(func(){})
```
## Customize limited pool
`ants` also supports customizing the capacity of pool. You can invoke the `NewPool` function to instantiate a pool with a given capacity, as following:
``` go
// Set 10000 the size of goroutine pool
p, _ := ants.NewPool(10000)
// Submit a task
p.Submit(func(){})
```
## Tune pool capacity
You can tune the capacity of `ants` pool at any time with `Tune(int)`:
``` go
pool.Tune(1000) // Tune its capacity to 1000
pool.Tune(100000) // Tune its capacity to 100000
```
Don't worry about the synchronous problems in this case, the function here is thread-safe (or should be called goroutine-safe).
## Release Pool
```go
pool.Release()
```
## About sequence
All tasks submitted to `ants` pool will not be guaranteed to be addressed in order, because those tasks scatter among a series of concurrent workers, thus those tasks are executed concurrently.
## Benchmarks
```
OS: macOS High Sierra
Processor: 2.7 GHz Intel Core i5
Memory: 8 GB 1867 MHz DDR3
Go Version: 1.9
```
<div align="center"><img src="https://user-images.githubusercontent.com/7496278/51515466-c7ce9e00-1e4e-11e9-89c4-bd3785b3c667.png"/></div>
In that benchmark-picture, the first and second benchmarks performed test cases with 1M tasks and the rest of benchmarks performed test cases with 10M tasks, both in unlimited goroutines and `ants` pool, and the capacity of this `ants` goroutine-pool was limited to 50K.
- BenchmarkGoroutine-4 represents the benchmarks with unlimited goroutines in golang.
- BenchmarkPoolGroutine-4 represents the benchmarks with a `ants` pool.
The test data above is a basic benchmark and more detailed benchmarks are about to be uploaded later.
### Benchmarks with Pool
![](https://user-images.githubusercontent.com/7496278/51515499-f187c500-1e4e-11e9-80e5-3df8f94fa70f.png)
In above benchmark picture, the first and second benchmarks performed test cases with 1M tasks and the rest of benchmarks performed test cases with 10M tasks, both in unlimited goroutines and `ants` pool, and the capacity of this `ants` goroutine-pool was limited to 50K.
**As you can see, `ants` can up to 2x faster than goroutines without pool (10M tasks) and it only consumes half the memory comparing with goroutines without pool. (both 1M and 10M tasks)**
### Benchmarks with PoolWithFunc
![](https://user-images.githubusercontent.com/7496278/51515565-1e3bdc80-1e4f-11e9-8a08-452ab91d117e.png)
### Throughput (it is suitable for scenarios where asynchronous tasks are submitted despite of the final results)
#### 100K tasks
![](https://user-images.githubusercontent.com/7496278/51515590-36abf700-1e4f-11e9-91e4-7bd3dcb5f4a5.png)
#### 1M tasks
![](https://user-images.githubusercontent.com/7496278/51515596-44617c80-1e4f-11e9-89e3-01e19d2979a1.png)
#### 10M tasks
![](https://user-images.githubusercontent.com/7496278/51515615-5e9b5a80-1e4f-11e9-8816-66a935c32b05.png)
There was only the test case with `ants` pool because my program crashed when it reached 10M goroutines without using a pool.
**In conclusion, `ants` can up to 2x~6x faster than goroutines without a pool and the memory consumption is reduced by 10 to 20 times.**
[1]: https://travis-ci.com/panjf2000/ants.svg?branch=master
[2]: https://travis-ci.com/panjf2000/ants
[3]: https://codecov.io/gh/panjf2000/ants/branch/master/graph/badge.svg
[4]: https://codecov.io/gh/panjf2000/ants
[5]: https://goreportcard.com/badge/github.com/panjf2000/ants
[6]: https://goreportcard.com/report/github.com/panjf2000/ants
[7]: https://godoc.org/github.com/panjf2000/ants?status.svg
[8]: https://godoc.org/github.com/panjf2000/ants
[9]: https://badges.frapsoft.com/os/mit/mit.svg?v=103
[10]: https://opensource.org/licenses/mit-license.php