# ants

A goroutine pool for Go

[![Build Status][1]][2] [![codecov][3]][4] [![goreportcard for panjf2000/ants][5]][6] [![godoc for panjf2000/ants][7]][8] [![MIT Licence][9]][10] [中文项目说明](README_ZH.md) | [Project Tutorial](http://blog.taohuawu.club/article/goroutine-pool) Package `ants` implements a fixed goroutine pool for managing and recycling a massive number of goroutines, allowing developers to limit the number of goroutines that created in your concurrent programs. ## Features: - Automatically managing and recycling a massive number of goroutines. - Periodically clearing overdue goroutines. - Friendly interfaces: submitting tasks, getting the number of running goroutines, readjusting capacity of pool dynamically, closing pool. - Efficient in memory usage and it even achieves higher performance than unlimited goroutines in golang. ## How to install ``` sh go get -u github.com/panjf2000/ants ``` Or, using glide: ``` sh glide get github.com/panjf2000/ants ``` ## How to use If your program will generate a massive number of goroutines and you don't want them to consume a vast amount of memory, with `ants`, all you need to do is to import `ants` package and submit all your tasks to the default limited pool created when `ants` was imported: ``` go package main import ( "fmt" "sync" "sync/atomic" "time" "github.com/panjf2000/ants" ) var sum int32 func myFunc(i interface{}) { n := i.(int32) atomic.AddInt32(&sum, n) fmt.Printf("run with %d\n", n) } func demoFunc() { time.Sleep(10 * time.Millisecond) fmt.Println("Hello World!") } func main() { defer ants.Release() runTimes := 1000 // Use the common pool var wg sync.WaitGroup for i := 0; i < runTimes; i++ { wg.Add(1) ants.Submit(func() { demoFunc() wg.Done() }) } wg.Wait() fmt.Printf("running goroutines: %d\n", ants.Running()) fmt.Printf("finish all tasks.\n") // Use the pool with a function, // set 10 to the size of goroutine pool and 1 second for expired duration p, _ := ants.NewPoolWithFunc(10, func(i interface{}) { myFunc(i) wg.Done() }) defer p.Release() // Submit tasks for i := 0; i < runTimes; i++ { wg.Add(1) p.Serve(int32(i)) } wg.Wait() fmt.Printf("running goroutines: %d\n", p.Running()) fmt.Printf("finish all tasks, result is %d\n", sum) } ``` ## Integrate with http server ```go package main import ( "io/ioutil" "net/http" "github.com/panjf2000/ants" ) type Request struct { Param []byte Result chan []byte } func main() { pool, _ := ants.NewPoolWithFunc(100, func(payload interface{}) { request, ok := payload.(*Request) if !ok { return } reverseParam := func(s []byte) []byte { for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 { s[i], s[j] = s[j], s[i] } return s }(request.Param) request.Result <- reverseParam }) defer pool.Release() http.HandleFunc("/reverse", func(w http.ResponseWriter, r *http.Request) { param, err := ioutil.ReadAll(r.Body) if err != nil { http.Error(w, "request error", http.StatusInternalServerError) } defer r.Body.Close() request := &Request{Param: param, Result: make(chan []byte)} // Throttle the requests traffic with ants pool. This process is asynchronous and // you can receive a result from the channel defined outside. if err := pool.Serve(request); err != nil { http.Error(w, "throttle limit error", http.StatusInternalServerError) } w.Write(<-request.Result) }) http.ListenAndServe(":8080", nil) } ``` ## Submit tasks Tasks can be submitted by calling `ants.Submit(func())` ```go ants.Submit(func(){}) ``` ## Customize limited pool `ants` also supports customizing limited pool. You can use the `NewPool` method to create a pool with the given capacity, as following: ``` go // Set 10000 the size of goroutine pool p, _ := ants.NewPool(10000) // Submit a task p.Submit(func(){}) ``` ## Tune pool capacity You can change `ants` pool capacity at any time with `ReSize(int)`: ``` go pool.ReSize(1000) // Tune its capacity to 1000 pool.ReSize(100000) // Tune its capacity to 100000 ``` Don't worry about the synchronous problems in this case, this method is thread-safe. ## About sequence All the tasks submitted to `ants` pool will not be guaranteed to be processed in order, because those tasks distribute among a series of concurrent workers, thus those tasks are processed concurrently. ## Benchmarks ``` OS : macOS High Sierra Processor : 2.7 GHz Intel Core i5 Memory : 8 GB 1867 MHz DDR3 Go1.9 ```
In that benchmark-picture, the first and second benchmarks performed test with 1M tasks and the rest of benchmarks performed test with 10M tasks, both unlimited goroutines and `ants` pool, and the capacity of this `ants` goroutine-pool was limited to 50K. - BenchmarkGoroutine-4 represents the benchmarks with unlimited goroutines in golang. - BenchmarkPoolGroutine-4 represents the benchmarks with a `ants` pool. The test data above is a basic benchmark and the more detailed benchmarks will be uploaded later. ### Benchmarks with Pool ![](benchmark_pool.png) In that benchmark-picture, the first and second benchmarks performed test with 1M tasks and the rest of benchmarks performed test with 10M tasks, both unlimited goroutines and `ants` pool, and the capacity of this `ants` goroutine-pool was limited to 50K. **As you can see, `ants` can up to 2x faster than goroutines without pool (10M tasks) and it only consumes half memory comparing with goroutines without pool. (both 1M and 10M tasks)** ### Benchmarks with PoolWithFunc ![](ants_bench_poolwithfunc.png) ### Throughput (it is suitable for scenarios where asynchronous tasks are submitted without concern for results) #### 100K tasks ![](ants_bench_10w.png) #### 1M tasks ![](ants_bench_100w.png) #### 10M tasks ![](ants_bench_1000w.png) There was only the test of `ants` Pool because my computer was crash when it reached 10M goroutines without pool. **In conclusion, `ants` can up to 2x~6x faster than goroutines without pool and the memory consumption is reduced by 10 to 20 times.** [1]: https://travis-ci.com/panjf2000/ants.svg?branch=develop [2]: https://travis-ci.com/panjf2000/ants [3]: https://codecov.io/gh/panjf2000/ants/branch/develop/graph/badge.svg [4]: https://codecov.io/gh/panjf2000/ants [5]: https://goreportcard.com/badge/github.com/panjf2000/ants [6]: https://goreportcard.com/report/github.com/panjf2000/ants [7]: https://godoc.org/github.com/panjf2000/ants?status.svg [8]: https://godoc.org/github.com/panjf2000/ants [9]: https://badges.frapsoft.com/os/mit/mit.svg?v=103 [10]: https://opensource.org/licenses/mit-license.php