// MIT License // Copyright (c) 2018 Andy Pan // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. package ants import ( "sync" "sync/atomic" "time" "github.com/panjf2000/ants/v2/internal" ) // PoolWithFunc accepts the tasks from client, // it limits the total of goroutines to a given number by recycling goroutines. type PoolWithFunc struct { // capacity of the pool. capacity int32 // running is the number of the currently running goroutines. running int32 // workers is a slice that store the available workers. workers []*goWorkerWithFunc // state is used to notice the pool to closed itself. state int32 // lock for synchronous operation. lock sync.Locker // cond for waiting to get a idle worker. cond *sync.Cond // poolFunc is the function for processing tasks. poolFunc func(interface{}) // workerCache speeds up the obtainment of the an usable worker in function:retrieveWorker. workerCache sync.Pool // blockingNum is the number of the goroutines already been blocked on pool.Submit, protected by pool.lock blockingNum int options *Options } // periodicallyPurge clears expired workers periodically. func (p *PoolWithFunc) periodicallyPurge() { heartbeat := time.NewTicker(p.options.ExpiryDuration) defer heartbeat.Stop() var expiredWorkers []*goWorkerWithFunc for range heartbeat.C { if atomic.LoadInt32(&p.state) == CLOSED { break } currentTime := time.Now() p.lock.Lock() idleWorkers := p.workers n := len(idleWorkers) var i int for i = 0; i < n && currentTime.Sub(idleWorkers[i].recycleTime) > p.options.ExpiryDuration; i++ { } expiredWorkers = append(expiredWorkers[:0], idleWorkers[:i]...) if i > 0 { m := copy(idleWorkers, idleWorkers[i:]) for i = m; i < n; i++ { idleWorkers[i] = nil } p.workers = idleWorkers[:m] } p.lock.Unlock() // Notify obsolete workers to stop. // This notification must be outside the p.lock, since w.task // may be blocking and may consume a lot of time if many workers // are located on non-local CPUs. for i, w := range expiredWorkers { w.args <- nil expiredWorkers[i] = nil } // There might be a situation that all workers have been cleaned up(no any worker is running) // while some invokers still get stuck in "p.cond.Wait()", // then it ought to wakes all those invokers. if p.Running() == 0 { p.cond.Broadcast() } } } // NewPoolWithFunc generates an instance of ants pool with a specific function. func NewPoolWithFunc(size int, pf func(interface{}), options ...Option) (*PoolWithFunc, error) { if size <= 0 { return nil, ErrInvalidPoolSize } if pf == nil { return nil, ErrLackPoolFunc } opts := loadOptions(options...) if expiry := opts.ExpiryDuration; expiry < 0 { return nil, ErrInvalidPoolExpiry } else if expiry == 0 { opts.ExpiryDuration = DefaultCleanIntervalTime } if opts.Logger == nil { opts.Logger = defaultLogger } p := &PoolWithFunc{ capacity: int32(size), poolFunc: pf, lock: internal.NewSpinLock(), options: opts, } p.workerCache.New = func() interface{} { return &goWorkerWithFunc{ pool: p, args: make(chan interface{}, workerChanCap), } } if p.options.PreAlloc { p.workers = make([]*goWorkerWithFunc, 0, size) } p.cond = sync.NewCond(p.lock) // Start a goroutine to clean up expired workers periodically. go p.periodicallyPurge() return p, nil } //--------------------------------------------------------------------------- // Invoke submits a task to pool. func (p *PoolWithFunc) Invoke(args interface{}) error { if atomic.LoadInt32(&p.state) == CLOSED { return ErrPoolClosed } var w *goWorkerWithFunc if w = p.retrieveWorker(); w == nil { return ErrPoolOverload } w.args <- args return nil } // Running returns the number of the currently running goroutines. func (p *PoolWithFunc) Running() int { return int(atomic.LoadInt32(&p.running)) } // Free returns a available goroutines to work. func (p *PoolWithFunc) Free() int { return p.Cap() - p.Running() } // Cap returns the capacity of this pool. func (p *PoolWithFunc) Cap() int { return int(atomic.LoadInt32(&p.capacity)) } // Tune changes the capacity of this pool. func (p *PoolWithFunc) Tune(size int) { if size <= 0 || size == p.Cap() || p.options.PreAlloc { return } atomic.StoreInt32(&p.capacity, int32(size)) } // Release Closes this pool. func (p *PoolWithFunc) Release() { atomic.StoreInt32(&p.state, CLOSED) p.lock.Lock() idleWorkers := p.workers for _, w := range idleWorkers { w.args <- nil } p.workers = nil p.lock.Unlock() } // Reboot reboots a released pool. func (p *PoolWithFunc) Reboot() { if atomic.CompareAndSwapInt32(&p.state, CLOSED, OPENED) { go p.periodicallyPurge() } } //--------------------------------------------------------------------------- // incRunning increases the number of the currently running goroutines. func (p *PoolWithFunc) incRunning() { atomic.AddInt32(&p.running, 1) } // decRunning decreases the number of the currently running goroutines. func (p *PoolWithFunc) decRunning() { atomic.AddInt32(&p.running, -1) } // retrieveWorker returns a available worker to run the tasks. func (p *PoolWithFunc) retrieveWorker() (w *goWorkerWithFunc) { spawnWorker := func() { w = p.workerCache.Get().(*goWorkerWithFunc) w.run() } p.lock.Lock() idleWorkers := p.workers n := len(idleWorkers) - 1 if n >= 0 { w = idleWorkers[n] idleWorkers[n] = nil p.workers = idleWorkers[:n] p.lock.Unlock() } else if p.Running() < p.Cap() { p.lock.Unlock() spawnWorker() } else { if p.options.Nonblocking { p.lock.Unlock() return } Reentry: if p.options.MaxBlockingTasks != 0 && p.blockingNum >= p.options.MaxBlockingTasks { p.lock.Unlock() return } p.blockingNum++ p.cond.Wait() p.blockingNum-- if p.Running() == 0 { p.lock.Unlock() spawnWorker() return } l := len(p.workers) - 1 if l < 0 { goto Reentry } w = p.workers[l] p.workers[l] = nil p.workers = p.workers[:l] p.lock.Unlock() } return } // revertWorker puts a worker back into free pool, recycling the goroutines. func (p *PoolWithFunc) revertWorker(worker *goWorkerWithFunc) bool { if atomic.LoadInt32(&p.state) == CLOSED || p.Running() > p.Cap() { return false } worker.recycleTime = time.Now() p.lock.Lock() p.workers = append(p.workers, worker) // Notify the invoker stuck in 'retrieveWorker()' of there is an available worker in the worker queue. p.cond.Signal() p.lock.Unlock() return true }