Merge remote-tracking branch 'origin/develop' into develop

This commit is contained in:
Andy Pan 2018-06-15 08:04:37 +08:00
commit cb7070eb8c
3 changed files with 191 additions and 14 deletions

View File

@ -1,6 +1,6 @@
# ants
<div align="center"><img src="https://github.com/panjf2000/ants/blob/master/ants_logo.png"/></div>
<div align="center"><img src="ants_logo.png"/></div>
<p align="center">A goroutine pool for Go</p>
@ -10,6 +10,8 @@
[![goreportcard for panjf2000/ants][3]][4]
![License](https://img.shields.io/dub/l/vibe-d.svg)
[中文项目说明](README_ZH.md) | [Project Tutorial](http://blog.taohuawu.club/article/42)
Package ants implements a fixed goroutine pool for managing and recycling a massive number of goroutines, allowing developers to limit the number of goroutines that created by your concurrent programs.
## Features:
@ -127,7 +129,7 @@ Don't worry about the synchronous problems in this case, this method is thread-s
All the tasks submitted to ants pool will not be guaranteed to be processed in order, because those tasks distribute among a series of concurrent workers, thus those tasks are processed concurrently.
## Benchmarks
<div align="center"><img src="https://github.com/panjf2000/ants/blob/master/ants_benchmarks.png"/></div>
<div align="center"><img src="ants_benchmarks.png"/></div>
In that benchmark-picture, the first and second benchmarks performed test with 100w tasks and the rest of benchmarks performed test with 1000w tasks, both unlimited goroutines and ants pool, and the capacity of this ants goroutine-pool was limited to 5w.
@ -139,27 +141,27 @@ The test data above is a basic benchmark and the more detailed benchmarks will
### Benchmarks with Pool
![](https://github.com/panjf2000/ants/blob/master/benchmark_pool.png)
![](benchmark_pool.png)
### Benchmarks with PoolWithFunc
![](https://github.com/panjf2000/ants/blob/master/ants_bench_poolwithfunc.png)
![](ants_bench_poolwithfunc.png)
### Throughput
#### 10w tasks
![](https://github.com/panjf2000/ants/blob/master/ants_bench_10w.png)
![](ants_bench_10w.png)
#### 100w tasks
![](https://github.com/panjf2000/ants/blob/master/ants_bench_100w.png)
![](ants_bench_100w.png)
#### 1000W tasks
![](https://github.com/panjf2000/ants/blob/master/ants_bench_1000w.png)
![](ants_bench_1000w.png)
There was only the test of `ants` Pool because my computer was crash when it reached 1000w goroutines.

175
README_ZH.md Normal file
View File

@ -0,0 +1,175 @@
# ants
<div align="center"><img src="ants_logo.png"/></div>
<p align="center">A goroutine pool for Go</p>
[![godoc for panjf2000/ants][1]][2] [![goreportcard for panjf2000/ants][3]][4] ![License](https://img.shields.io/dub/l/vibe-d.svg)
[英文说明页](README.md) | [项目介绍文章传送门](http://blog.taohuawu.club/article/42)
`ants`是一个高性能的协程池实现了对大规模goroutine的调度管理、goroutine复用允许使用者在开发并发程序的时候限制协程数量复用资源达到更高效执行任务的效果。
## 功能:
- 实现了自动调度并发的goroutine复用goroutine
- 提供了友好的接口:任务提交、获取运行中的协程数量、动态调整协程池大小
- 资源复用极大节省内存使用量在大规模批量并发任务场景下比原生goroutine并发具有更高的性能
## 安装
``` sh
go get -u github.com/panjf2000/ants
```
使用包管理工具 glide 安装:
``` sh
glide get github.com/panjf2000/ants
```
## 使用
写 go 并发程序的时候如果程序会启动大量的 goroutine 势必会消耗大量的系统资源内存CPU通过使用 `ants`,可以实例化一个协程池,复用 goroutine ,节省资源,提升性能:
``` go
package main
import (
"fmt"
"sync"
"sync/atomic"
"github.com/panjf2000/ants"
"time"
)
var sum int32
func myFunc(i interface{}) error {
n := i.(int)
atomic.AddInt32(&sum, int32(n))
fmt.Printf("run with %d\n", n)
return nil
}
func demoFunc() error {
time.Sleep(10 * time.Millisecond)
fmt.Println("Hello World!")
return nil
}
func main() {
runTimes := 1000
// use the common pool
var wg sync.WaitGroup
for i := 0; i < runTimes; i++ {
wg.Add(1)
ants.Submit(func() error {
demoFunc()
wg.Done()
return nil
})
}
wg.Wait()
fmt.Printf("running goroutines: %d\n", ants.Running())
fmt.Printf("finish all tasks.\n")
// use the pool with a function
// set 10 the size of goroutine pool
p, _ := ants.NewPoolWithFunc(10, func(i interface{}) error {
myFunc(i)
wg.Done()
return nil
})
// submit tasks
for i := 0; i < runTimes; i++ {
wg.Add(1)
p.Serve(i)
}
wg.Wait()
fmt.Printf("running goroutines: %d\n", p.Running())
fmt.Printf("finish all tasks, result is %d\n", sum)
}
```
## 任务提交
提交任务通过调用 `ants.Submit(func())`方法:
```go
ants.Submit(func() {})
```
## 自定义池
`ants`支持实例化使用者自己的一个 Pool ,指定具体的池容量;通过调用 `NewPool` 方法可以实例化一个新的带有指定容量的 Pool ,如下:
``` go
// set 10000 the size of goroutine pool
p, _ := ants.NewPool(10000)
// submit a task
p.Submit(func() {})
```
## 动态调整协程池容量
需要动态调整协程池容量可以通过调用`ReSize(int)`
``` go
pool.ReSize(1000) // Readjust its capacity to 1000
pool.ReSize(100000) // Readjust its capacity to 100000
```
该方法是线程安全的。
## Benchmarks
系统参数:
```
OS : macOS High Sierra
Processor : 2.7 GHz Intel Core i5
Memory : 8 GB 1867 MHz DDR3
```
<div align="center"><img src="ants_benchmarks.png"/></div>
上图中的前两个 benchmark 测试结果是基于100w任务量的条件剩下的几个是基于1000w任务量的测试结果`ants`的默认池容量是5w。
- BenchmarkGoroutine-4 代表原生goroutine
- BenchmarkPoolGroutine-4 代表使用协程池`ants`
### Benchmarks with Pool
![](benchmark_pool.png)
### Benchmarks with PoolWithFunc
![](ants_bench_poolwithfunc.png)
### 吞吐量测试
#### 10w 任务量
![](ants_bench_10w.png)
#### 100w 任务量
![](ants_bench_100w.png)
#### 1000w 任务量
![](ants_bench_1000w.png)
1000w任务量的场景下我的电脑已经无法支撑 golang 的原生 goroutine 并发,所以只测出了使用`ants`池的测试结果。
[1]: https://godoc.org/github.com/panjf2000/ants?status.svg
[2]: https://godoc.org/github.com/panjf2000/ants
[3]: https://goreportcard.com/badge/github.com/panjf2000/ants
[4]: https://goreportcard.com/report/github.com/panjf2000/ants

View File

@ -63,8 +63,8 @@ func demoPoolFunc(args interface{}) error {
}
func BenchmarkGoroutineWithFunc(b *testing.B) {
for i := 0; i < b.N; i++ {
var wg sync.WaitGroup
for i := 0; i < b.N; i++ {
for j := 0; j < RunTimes; j++ {
wg.Add(1)
go func() {
@ -77,13 +77,13 @@ func BenchmarkGoroutineWithFunc(b *testing.B) {
}
func BenchmarkAntsPoolWithFunc(b *testing.B) {
for i := 0; i < b.N; i++ {
var wg sync.WaitGroup
p, _ := ants.NewPoolWithFunc(50000, func(i interface{}) error {
demoPoolFunc(i)
wg.Done()
return nil
})
for i := 0; i < b.N; i++ {
for j := 0; j < RunTimes; j++ {
wg.Add(1)
p.Serve(loop)